【题目】先阅读短文,然后回答短文后面所给出的问题:
对于三个数a、b、c的平均数,最小的数都可以给出符号来表示,我们规定M{a,b,c}表示a,b,c这三个数的平均数,min{a,b,c}表示a,b,c这三个数中最小的数,max{a,b,c}表示a,b,c这三个数中最大的数.例如:M{﹣1,2,3}=,min{﹣1,2,3}=﹣1,max{﹣1,2,3}=3;M{﹣1,2,a}=,min{﹣1,2,a}=.
(1)请填空:max{c﹣1,c,c+1}= ;若m<0,n>0,min{3m,(n+3)m,﹣mn}= ;
(2)若min{2,2x+2,4﹣2x}=2,求x的取值范围;
(3)若M{2,x+1,2x}=min{2,x+1,2x},求x的值.
【答案】(1)c+1,(n+3)m;(2)0≤x≤1;(3)x=1.
【解析】
(1)三个数c-1,c,c+1最大的数是c+1,三个数3m,(n+3)m,-mn中,m<0,n>0,最小的数是(n+3)m;
(2)三个数2,2x+2,4-2x中最小的数是2;
(3)三个数2,x+1,2x的平均数与最小数相等.
解:(1)max{c-1,c,c+1}=c+1.
∵m<0,n>0,
∴3m<0,(n+3)m=mn+3m<0,-mn>0,
∴-mn>3n>(n+3)m,
∴min{3m,(n+3)m,-mn}=(n+3)m.
故答案是:c+1,(n+3)m;
(2)根据题意得:
解得 0≤x≤1.
(3) =1+x,
则2<x+1<2x或2x<x+1<2.
①当2<x+1<2x时,依题意得
1+x=2,
解得 x=1;
②当2x<x+1<2时,依题意得
1+x=2x,
解得x=1.
综上所述,x=1.
科目:初中数学 来源: 题型:
【题目】某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,小彬从该网店购买了3筒甲种羽毛球和2筒乙种羽毛球,一共花费270元.
(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?
(2)根据消费者需求,该网店决定购进甲、乙两种羽毛球各80筒.已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.元旦期间该网店开展优惠促销活动,甲种羽毛球打折销售,乙种羽毛球售价不变,若所购进羽毛球均可全部售出,要使全部售出所购进的羽毛球的利润率是,那么甲种羽毛球是按原销售价打几折销售的.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,正比例函数 的图象与反比例函数 在第一象限的图象交于点 ,过点 作 轴的垂线,垂足为 ,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果点 为反比例函数在第一象限图象上的点(点 与点 不重合),且点 的横坐标为1,在 轴上求一点 ,使 最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解决问题:
一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.
(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.
(2)小明家距小彬家多远?
(3)货车一共行驶了多少千米?
(4)货车每千米耗油0.2升,这次共耗油多少升?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.
(1)求证:△ABE≌△CDF;
(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算
(1)﹣﹣(+13)+(﹣)﹣(﹣17)
(2)﹣22+3÷(﹣1)2017﹣|﹣4|×5
(3)先化简再求值﹣3(2x2﹣xy)+4(x2+xy﹣6),其中x=﹣1,y=2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算
(1)3x3x9﹣2xx3x8
(2)﹣12+20160+()2017×(﹣4)2018
(3)(x+4)(x﹣4)﹣(x﹣2)2
(4)ab(a+b)﹣(a﹣b)(a2+b2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com