精英家教网 > 初中数学 > 题目详情
如图,已知反比例函数y1=的图象与一次函数y2=kx+b的图象交于两点A(-2,1)、B(a,-2).
(1)求反比例函数和一次函数的解析式;
(2)若一次函数y2=kx+b的图象交y轴于点C,求△AOC的面积(O为坐标原点);
(3)求使y1>y2时x的取值范围.

【答案】分析:(1)先根据点A的坐标求出反比例函数的解析式为y1=-,再求出B的坐标是(1,-2),利用待定系数法求一次函数的解析式;
(2)在一次函数的解析式中,令x=0,得出对应的y2的值,即得出直线y2=-x-1与y轴交点C的坐标,从而求出△AOC的面积;
(3)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围-2<x<0或x>1.
解答:解:(1)∵函数y1=的图象过点A(-2,1),即1=;(1分)
∴m=-2,即y1=-,(2分)
又∵点B(a,-2)在y1=-上,
∴a=1,∴B(1,-2).(3分)
又∵一次函数y2=kx+b过A、B两点,
.(4分)
解之得
∴y2=-x-1.(5分)

(2)∵x=0,∴y2=-x-1=-1,
即y2=-x-1与y轴交点C(0,-1).(6分)
设点A的横坐标为xA
∴△AOC的面积S△OAC==×1×2=1.(7分)

(3)要使y1>y2,即函数y1的图象总在函数y2的图象上方.(8分)
∴-2<x<0,或x>1.(10分)
点评:本题主要考查了待定系数法求反比例函数与一次函数的解析式.这里体现了数形结合的思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
m
x
图象与一次函数y=kx+b的图象均经过A(-1,4)和B(a,
4
5
)两点,
(1)求B点的坐标及两个函数的解析式;
(2)若一次函数y=kx+b的图象与x轴交于点C,求C点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
kx
(k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且S△AOB=3.若一次函数y=ax+1的图象经过点A,并且与x轴相交于点C,求AO:AC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
kx
的图象与一次函数y=ax+b的图象交于M(2,m)和N(-1,-4)两点.
(1)求这两个函数的解析式;
(2)求△MON的面积;
(3)请判断点P(4,1)是否在这个反比例函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y1=
kx
和一次函数y2=ax+b的图象相交于点A和点D,且点A的横坐标为1,点D的纵坐标为-1.过点A作AB⊥x轴于点B,△AOB的面积为1.
(1)求反比例函数和一次函数的解析式.
(2)若一次函数y2=ax+b的图象与x轴相交于点C,求∠ACO的度数.
(3)结合图象直接写出:当y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y=
k
x
的图象经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,一2).
(1)求直线y=ax+b的解析式;
(2)设直线y=ax+b与x轴交于点M,求AM的长;
(3)在双曲线上是否存在点P,使得△MBP的面积为8?若存在请求P点坐标;若不存在请说明理由.

查看答案和解析>>

同步练习册答案