精英家教网 > 初中数学 > 题目详情
13.下列各式的分解因式中,没有用到公式法的是(  )
A.3m2-6mn+3n2=3(m-n)2B.x2b+ab2+ab=ab(a+b+1)
C.mx2-4m=m(x-2)(x+2)D.x2+12x+36=(x+6)2

分析 根据平方差公式,完全平方公式,可得答案.

解答 解:A、提公因式法,完全平方公式,故A正确;
B、提公因式法,故B错误;
C、提公因式法,平方差公式,故C正确;
D、完全平方公式,故D正确;
故选:B.

点评 本题考查了因式分解,熟记公式法是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.在同一坐标系中画出了三个一次函数的图象:
y=1-x,y=x+1和 y=3x-1
(1)求y=1-x和 y=3x-1的交点A的坐标;
(2)根据图象填空:
①当x>1时3x-1>x+1;
②当x<0时1-x>x+1;
(3)对于三个实数a,b,c,用max{a,b,c}表示这三个数中最大的数,如max{-1,2,3}=3,max{-1,2,a}=$\left\{\begin{array}{l}2(当a≤2时)\\ a(当a>2时)\end{array}\right.$,请观察三个函数的图象,直接写出 max{1-x,x+1,3x-1}的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度随时间的变化规律如图所示(图中OABC为一折线),这个容器的形状是图中的哪一个(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,我市某中学课外活动小组的同学要测量海河某段流域的宽度,小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处188米远的B处测得∠CBD=30°,根据这些数据计算出这段流域的河宽和BC的长.
(结果精确到1m)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N,连接CN.
(1)如图1,求证:CM=CN;
(2)如图1,若△CMN的面积与△CDN的面积比为3:1,求$\frac{MN}{DN}$的值;
(3)如图2,已知点P、Q、T分别是CM、CN、MN上的动点,若AN=3,BM=1,请直接写出PT+QT的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.双胞胎兄弟小明和小亮在同一班读书,周五16:00时放学后,小明和同学走路回家,途中没有停留,小亮骑车回家,他们各自与学校的距离S(米)与用去的时间t(分钟)的关系如图所示,根据图象提供的有关信息,下列说法中错误的是(  )
A.兄弟俩的家离学校1000米
B.他们同时到家,用时30分钟
C.小明的速度为50米/分钟
D.小亮中间停留了一段时间后,再以80米/分钟的速度骑回家

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.阅读:在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段的中点坐标为($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{{y}_{1}+{y}_{2}}{2}$).
理解:(1)如图1,C为线段AB的中点,A点的坐标为(0,2),B点的坐标为(4,2),则C点的坐标为(2,2)
(2)如图2,E为线段DF的中点,E点的坐标为(-1,-2),D点的坐标为(-1,3),则F点的坐标为(-1,-7).
应用:如图3,点M的坐标为(0,4),点N的坐标为(2,0),则线段MN的中点H的坐标为(1,2),线段OH的长为$\sqrt{5}$,线段MN的长为2$\sqrt{5}$,$\frac{OH}{MN}$=$\frac{1}{2}$.
扩展:直角三角形ABC中,D为斜边AB的中点,则$\frac{CD}{AB}$=$\frac{1}{2}$(只填数字,不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.(1)分解因式:6xy2-12x2y3
(2)分式计算:$\frac{x-5}{4-x}$-1-$\frac{1}{x-4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在同一平面直角坐标系中,画出函数y=x2,y=(x+2)2,y=(x-2)2的图象,并写出对称轴及顶点坐标.

查看答案和解析>>

同步练习册答案