【题目】定义:数x、y、z中较大的数称为max{x,y,z}.例如max{﹣3,1,﹣2}=1,函数y=max{﹣t+4,t,}表示对于给定的t的值,代数式﹣t+4,t,中值最大的数,如当t=1时y=3,当t=0.5时,y=6.则当t=_________时函数y的值最小.
科目:初中数学 来源: 题型:
【题目】在y轴右侧且平行于y轴的直线l被反比例函数()与函数()所截,当直线l向右平移4个单位时,直线l被两函数图象所截得的线段扫过的面积为__________平方单位.
【答案】8
【解析】∵y轴右侧且平行于y轴的直线l被反比例函数y=(x>0)与函数y=+2(x>0)所截,∴设它们的交点为A,C,∴AC=2,∵直线l向右平移4个单位,∴CD=4,∴直线l被两函数图象所截得的线段扫过的面积为 2×4=8平方单位.故答案为8.
【题型】填空题
【结束】
14
【题目】函数的图象如右图所示,则结论:
①两函数图象的交点的坐标为; ②当时, ;
③当时, ; ④当逐渐增大时, 随着的增大而增大, 随着的增大而减小.
其中正确结论的序号是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)求证:△AEF是等腰直角三角形;
(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】良好行为习惯的养成,是中学生成长重要内容之一.某中学为了了解学生良好行为习惯养成的情况,该校七年级数学兴趣小组在校内随机抽取了部分同学进行调查评分,然后按各人得分高低分成“优秀”、“良好”、“一般”、“较差”四个等级,并绘制了如下两幅统计图(不完整):
请你根据图中提供的信息,完成下列问题:
(1)图1中“优秀”部分所对应的圆心角为 .
(2)在如图2中,将“良好”部分的条形图补充完整;
(3)这次调查,良好行为习惯的养成“较差”人数占被调查人数的百分率为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一水箱,它的容积为500L,水箱内原有水200L,现往水箱中注水,已知每分钟注水10L.
(1)写出水箱内水量(L)与注水时间(min)的函数关系.
(2)求注水12min时水箱内的水量?
(3)需多长时间把水箱注满?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是________(填写序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:A是以BC为直径的圆上的一点,BE是⊙O的切线,CA的延长线与BE交于E点,F是BE的中点,延长AF,CB交于点P.
(1)求证:PA是⊙O的切线;
(2)若AF=3,BC=8,求AE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com