精英家教网 > 初中数学 > 题目详情
17.已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为线段AB上一动点.
(1)求证:BD=AE;
(2)当D是线段AB中点时,求证:四边形AECD是正方形.

分析 (1)根据等腰直角三角形的性质可得AC=BC,CD=CE,再根据同角的余角相等求出∠ACE=∠BCD,然后利用“边角边”证明△ACE和△BCD全等,然后根据全等三角形对应边相等即可证明;
(2)由于△ABC和△ECD都是等腰直角三角形,那么∠B=∠BAC=45°,AC=BC,CE=CD,∠ACB=∠DCE=90°,结合等式性质易证∠1=∠2,那么利用SAS可证△ACE≌△BCD,于是可得∠CAE=∠B=45°,求得∠EAD=90°,即可求得结论.

解答 (1)证明:∵△ABC和△ECD都是等腰直角三角形,
∴AC=BC,CD=CE,
∵∠ACB=∠DCE=90°,
∴∠ACE+∠ACD=∠BCD+∠ACD,
∴∠ACE=∠BCD,
在△ACE和△BCD中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACE=∠BCD}\\{CD=CE}\end{array}\right.$,
∴△ACE≌△BCD(SAS),
∴BD=AE;

(2)证明:∵△ABC和△ECD都是等腰直角三角形,
∴∠B=∠BAC=45°,AC=BC,CE=CD,∠ACB=∠DCE=90°,
∴∠ACB-∠ACD=∠DCE-∠ACD,
即∠1=∠2,
在△ACE和△BCD中,
$\left\{\begin{array}{l}{AC=BC}\\{∠1=∠2}\\{CE=CD}\end{array}\right.$,
∴△ACE≌△BCD,
∴∠CAE=∠B=45°,
∴∠EAD=∠EAC+∠CAB=45°+45°=90°,
∴∠ECD=∠ADC=∠DAE=90°,
∴四边形AECD是矩形,
∵CE=CD,
∴矩形AECD是正方形.

点评 本题考查了全等三角形的判定与性质,等腰直角三角形的性质,以及等角的余角相等的性质,熟记各性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.已知:如图E、F是?ABCD的对角线AC上的两点,且AF=CE.求证:DE∥BF.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.$\frac{3}{2}$的相反数是(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.-$\frac{3}{2}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.(1)化简:($\frac{1}{a-b}$-$\frac{1}{a+b}$)÷$\frac{b}{{a}^{2}-2ab+{b}^{2}}$
(2)解不等式组$\left\{\begin{array}{l}{2x>-3}\\{x-1≤8-2x}\end{array}\right.$;并求它的最小整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.我市某中学艺术节期间,向学校学生征集书画作品.九年级美术李老师从全年级14个班中随机抽取了A、B、C、D 4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.
(1)李老师采取的调查方式是抽样调查(填“普查”或“抽样调查”),李老师所调查的4个班征集到作品共12件,其中B班征集到作品3,请把图2补充完整.
(2)如果全年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,抛物线y=-x2+bx+c与x轴交于A、B点,与y轴交于C点,顶点为D,其中点A、C的坐标分别是(-1,0)、(0,3).
(1)求抛物线的表达式与顶点D的坐标;
(2)连结BD,过点O作OE⊥BD于点E,求OE的长.结BD,过点O作OE⊥BD于点E,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=$\frac{3}{2}$,则t的值是$\frac{9}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,平面直角坐标系xOy中,A(0,12),B(40,0),C(36,12),点P从点A出发,以1个单位/s的速度向点C运动;点Q从B同时出发,以2个单位/s的速度向点O运动,规定其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为ts.
(1)求过O,C,B三点的抛物线解析式;
(2)t为何值时,PQ=BC;
(3)在(1)中的抛物线上,是否存在点M,使以O,M,P,Q为顶点的四边形为平行四边形?若存在,直接写出此时t的值和M点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,已知AB∥DE,BC∥EF,∠B=35°,则∠E=35°.

查看答案和解析>>

同步练习册答案