分析 (1)根据正方形的性质可得AB=BC,∠ABE=∠BCF,然后利用“边角边”证明△ABE和△BCF全等,即可得出结论;
(2)根据全等三角形对应边相等可得AE=BF,全等三角形对应角相等可得∠BAE=∠CAF,然后求出∠BAE+∠ABF=∠ABC=90°,判断出AE⊥BF.
解答 证明:(1)在正方形ABCD中,AB=BC,∠ABE=∠BCF,
在△ABE和△BCF中,$\left\{\begin{array}{l}{AB=BC}&{\;}\\{∠ABE=∠BCF}&{\;}\\{BE=CF}&{\;}\end{array}\right.$,
∴△ABE≌△BCF(SAS),
∴AE=BF;
(2)∵△ABE≌△BCF,
∴∠BAE=∠CAF,
∴∠BAE+∠ABF=∠CAF+∠ABF=∠ABC=90°,
∴AE⊥BF.
点评 本题考查了正方形的性质,全等三角形的判定与性质,确定出AE与BF所在的三角形并证明三角形全等是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com