精英家教网 > 初中数学 > 题目详情

如图中,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=,AB=,设∠BCD=α,求cosα.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合,两腰分别落在AB,AC上,且G,F分别是AB,AC的中点.
精英家教网
(1)求等腰梯形DEFG的面积;
(2)操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF′G′(如图2).
探究1:在运动过程中,四边形BDG′G能否是菱形?若能,请求出此时x的值;若不能,请说明理由;
探究2:设在运动过程中△ABC与等腰梯形DEFG重叠部分的面积为y,求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)操作:如图1,在线段AB所在的直线上取一点O(O点在线段外),将线段AB绕点O旋转一周,所得到的图形是个圆环(如图2),此圆环的面积就是线段AB所扫过的面积,已知AB=2,OA=1,则线段AB扫过的面积为
 

精英家教网
(2)如图3,在Rt△ABC中,∠C=90°,∠B=30°,AC=2,若将△ABC绕点A旋转一周,那么边BC扫过的图形为
 
,面积为
 

(3)若将图3中的Rt△ABC绕点C旋转一周,则边AB扫过的图形是什么?面积为多少?
(结果中保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•顺义区一模)问题:如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,点D是射线CB上任意一点,△ADE是等边三角形,且点D在∠ACB的内部,连接BE.探究线段BE与DE之间的数量关系.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.
(1)当点D与点C重合时(如图2),请你补全图形.由∠BAC的度数为
60°
60°
,点E落在
AB的中点处
AB的中点处
,容易得出BE与DE之间的数量关系为
BE=DE
BE=DE

(2)当点D在如图3的位置时,请你画出图形,研究线段BE与DE之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

数学学习总是如数学知识自身的生长历史一样,往往起源于猜测中的发现,我们所发现的不一定对,但是当利用我们已有的知识作为推理的前提论证之后,当所发现的在逻辑上没有矛盾之后,就可以作为新的推理的前提,数学中称之为定理.
(1)尝试证明:
等腰三角形的探索中借助折纸发现:直角三角形斜边上的中线等于斜边的一半.但是当时并未说明这个结论的合理.现在我们学些了矩形的判定和性质之后,就可以解决这个问题了.如图1若在Rt△ABC中CD是斜边AB的中线,则CD=
12
AB
,你能用矩形的性质说明这个结论吗?请说明.
(2)迁移运用:利用上述结论解决下列问题:
①如图2所示,四边形ABCD中,∠BAD=90°,∠DCB=90°,EF分别是BD、AC的中点,请你说明EF与AC的位置关系.
②如图3所示,?ABCD中,以AC为斜边作Rt△ACE,∠AEC=90°,且∠BED=90°,试说明平行四边形ABCD是矩形.

查看答案和解析>>

同步练习册答案