精英家教网 > 初中数学 > 题目详情
如图,已知在⊙O中,AB=8,AC是⊙O的直径,AC⊥BD于F,∠A=30°.
(1)求图中阴影部分的面积;
(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.

【答案】分析:(1)由∠A=30°,可求得∠BOC=60°,再根据垂径定理得∠BOD=120°,由勾股定理得出BF以及OB的长,从而计算出阴影部分的面积即扇形的面积.
(2)直接根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得圆锥的底面圆的半径.
解答:解:(1)∵AC⊥BD于F,∠A=30°,
∴∠BOC=60°,∠OBF=30°,
∵AB=8
∴BF=4
∴OB==8,
∴S阴影=S扇形==π.

(2)设圆锥的底面圆的半径为r,则周长为2πr,
•2πr=
∴r=
点评:本题考查了扇形面积的计算,以及圆周角定理、垂径定理和勾股定理,是基础知识要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.
(1)求证:△BED≌△CFD;
(2)若∠A=90°,求证:四边形DFAE是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在⊙O中,CD是直径,弦AB⊥CD,M是垂足,E为MA上的一点,连接C、E两点并延长交⊙O于F,过F精英家教网作⊙O的切线交BA的延长线于点P.
求证:CE•EF=2PE•EM.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•普宁市一模)如图,已知在?ABCD中,E、F是对角线BD延长线上的两点,且∠BCE=∠DAF,求证:△ECD≌△FAB.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,AB=AC,AB的垂直平分线DE交AC于点E,CE的垂直平分线正好经过点B,与AC相交于点F,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,AD、AE分别是BC边上的高和中线,AB=9cm,AC=7cm,BC=8m,则DE=
2
2
cm.

查看答案和解析>>

同步练习册答案