精英家教网 > 初中数学 > 题目详情

若矩形的周长为a m,设其一边长为x m,则另一边长为

[  ]

A.(a-x)m             B.(a-2x)m

C.(-x)m            D.(a-x)m

答案:C
解析:

矩形的周长=(矩形的长+矩形的宽)×2

∴另一条边长=,化简得:

正确答案C


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在矩形ABCD中,M是BC的中点,MA⊥MD,若矩形的周长为48cm,则矩形ABCD的面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题.例如,原问题是“若矩形的两边长分别为3和4,求矩形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若矩形的周长为14,且一边长为3,求另一边的长”;也可以是“若矩形的周长为14,求矩形面积的最大值”,等等.
(1)设A=
3x
x-2
-
x
x+2
,B=
x2-4
x
,求A与B的积;
(2)提出(1)的一个“逆向”问题,并解答这个问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

51、(1)图(1)是一个长为2m,宽为2n的矩形,把此矩形沿图中虚线用剪刀均分为四个小长方形,然后按图(2)的形状拼成一个正方形,请问:这两个图形的什么量不变所得的正方形的面积比原矩形的面积多出的阴影部分的面积用含m,n的代数式可表示为
(m-n)2=m2-2mn+n2

(2)由(1)的探索可得出的结论是:在周长一定的矩形中,
长和宽相等
时,面积最大;
(3)若矩形的周长为24cm,则当边长为多少时,该图形的面积最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•达州)【问题背景】
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:s=-x2+
1
2
x(x
>0),利用函数的图象或通过配方均可求得该函数的最大值.
【提出新问题】
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
【分析问题】
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:y=2(x+
1
x
)
(x>0),问题就转化为研究该函数的最大(小)值了.
【解决问题】
借鉴我们已有的研究函数的经验,探索函数y=2(x+
1
x
)
(x>0)的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数y=2(x+
1
x
)
(x>0)的图象:
 x  
1
4
 
1
3
 
1
2
 1  2  3  4
 y              
(2)观察猜想:观察该函数的图象,猜想当x=
1
1
时,函数y=2(x+
1
x
)
(x>0)有最
值(填“大”或“小”),是
4
4

(3)推理论证:问题背景中提到,通过配方可求二次函数s=-x2+
1
2
x(x
>0)的最大值,请你尝试通过配方求函数y=2(x+
1
x
)
(x>0)的最大(小)值,以证明你的猜想.〔提示:当x>0时,x=(
x
)2

查看答案和解析>>

科目:初中数学 来源: 题型:

问题背景:
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:s=-x2+
1
2
x
(x>0),利用函数的图象或通过配方均可求得该函数的最大值.
提出新问题:
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题:
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:y=2(x+
1
x
)
(x>0),问题就转化为研究该函数的最大(小)值了.
解决问题:
借鉴我们已有的研究函数的经验,探索函数y=2(x+
1
x
)
(x>0)的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数y=2(x+
1
x
)
(x>0)的图象:
x 1/4 1/3 1/2 1 2 3 4
y
17
2
20
3
5 4 5
20
3
17
2
(2)观察猜想:观察该函数的图象,猜想当x=
1
1
时,函数y=2(x+
1
x
)
(x>0)有最
值(填“大”或“小”),是
4
4

(3)推理论证:问题背景中提到,通过配方可求二次函数s=-x2+
1
2
x
(x>0)的最大值,请你尝试通过配方求函数y=2(x+
1
x
)
(x>0)的最大(小)值,以证明你的猜想.〔提示:当x>0时,x=(
x
)2

查看答案和解析>>

同步练习册答案