分析 根据∠ACB=90°,CD⊥AB,得到∠CAD=∠BCD,推出Rt△ACD∽Rt△CBD,于是得到CD2=AD•BD,根据AF⊥BG,GD⊥AB,证得∠EDA=∠EFG=∠GDP=90°,推出△BGD∽△ADE,于是得到AD•BD=DG•DE即可得到结论.
解答 证明:∵∠ACB=90°,CD⊥AB,
∴∠ACD+∠BCD=90°,∠ACD+∠CAD=90°,
∴∠CAD=∠BCD,
∴Rt△ACD∽Rt△CBD,
∴$\frac{CD}{BD}$=$\frac{AD}{CD}$,
∴CD2=AD•BD,
又∵AF⊥BG,GD⊥AB,
∴∠EDA=∠EFG=∠GDB=90°,
∵∠1=∠2,
∴∠G=∠3,
∴△BGD∽△ADE,
∴$\frac{GD}{AD}$=$\frac{BD}{DE}$,
∴AD•BD=DG•DE
∴CD2=DE•DG.
点评 此题主要考查的是相似三角形的判定和性质,垂直的定义,熟练掌握相似三角形的判定和性质是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com