精英家教网 > 初中数学 > 题目详情
从甲、乙两题中选做一题.如果两题都做,只以甲题计分.
题甲:若关于x一元二次方程x2-2(2-k)x+k2+12=0有实数根a,β.
(1)求实数k的取值范围;
(2)设t=
a+β
k
,求t的最小值.
题乙:如图所示,在矩形ABCD中,P是BC边上一点,连接DP并延长,交AB的延长线精英家教网于点Q.
(1)若
BP
PC
=
1
3
,求
AB
AQ
的值;
(2)若点P为BC边上的任意一点,求证:
BC
BP
-
AB
BQ
=.
我选做的是
 
题.
分析:对甲:(1)由于一元二次方程存在两实根,令△≥0求得k的取值范围;
(2)将α+β换为k的表达式,根据k的取值范围得出t的取值范围,求得最小值.
解答:题甲
解:(1)∵一元二次方程x2-2(2-k)x+k2+12=0有实数根a,β,
∴△≥0,
即4(2-k)2-4(k2+12)≥0,
得k≤-2.
(2)由根与系数的关系得:a+β=-[-2(2-k)]=4-2k,
t=
a+β
k
=
4-2k
k
=
4
k
-2

∵k≤-2,
-2≤
4
k
-2<0

-4≤
4
k
-2<-2

即t的最小值为-4.

题乙:
(1)解:∵AB∥CD,∴
BP
PC
=
BQ
CD
=
1
3
,即CD=3BQ,
AB
AQ
=
CD
CD+BQ
=
3BQ
3BQ+BQ
=
3
4

(2)证明:四边形ABCD是矩形
∵AB=CD,AB∥DC
∴△DPC∽△QPB
DC
BQ
=
PC
BP

BC
BP
-
AB
BQ
=
BP+PC
BP
-
AB
BQ
=1+
PC
BP
-
DC
BQ
=1
BC
BP
-
AB
BQ
=1.
点评:本题考查了一元二次方程根的判定,另要掌握两根之和、两根之积与系数的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网从甲、乙两题中选做一题即可.如果两题都做,只以甲题计分.
题甲:如图,反比例函数y=
kx
的图象与一次函数y=mx+b的图象交于A(1,3),B(n,-1)两点.
(1)求反比例函数与一次函数的解析式;
(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.

题乙:如图,在矩形ABCD中,AB=4,AD=10.直角尺的直角顶点P在AD上滑动时(点P与A,D不重合),一直角边经过点C,另一直角边AB交于点E.我们知道,结论“Rt△AEP∽Rt△DPC”成立.
(1)当∠CPD=30°时,求AE的长;
(2)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说精英家教网明理由.
我选做的是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分.
甲:小东从A地出发以某一速度向B地走去,同时小明从B地出发以另-速度向A地而行.如图所示,图中精英家教网的线段y1、y2分别表示小东、小明离B地的距离(千米)与所用时间(小时)的关系.
(1)试用文字说明:交点P所表示的实际意义;
(2)试求y1、y2的解析式;
(3)试求出A、B两地之间的距离.

乙:如图,?ABCD中,E是BA的延长线上一点,CE与AD交于点F.
(1)求证:△AEF∽△DCF;精英家教网
(2)若AB=2AE,△AEF的面积为2
2
,求?ABCD的面积.

我选做的是
 
题.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网本题为选做题,从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分.
选做题:甲:已知关于x的一元二次方程x2-(2m+1)x+m2+m-2=0
(1)求证:不论m取何值,方程总有两个不相等的实数根;
(2)若方程的两个实数根x1、x2满足
1
x1
+
1
x2
=1+
1
m+2
,求m的值.
乙:如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.
(1)求证:BD是⊙O的切线.
(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=
2
3
,求△ACF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•峨眉山市二模)选做题:从甲、乙两题中选做一题,如果两题都做,只以甲题计分.
题甲:如图1,正比例函数y=-
1
2
x
的图象与反比例函数y=
k
x
(k≠0)
在第二象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果B为反比例函数图象上的点,且B点的横坐标为-1,在x轴上一点P,使PA+PB最小,求P点的坐标.
题乙:如图2,已知AB、AC分别为⊙O的直径和弦,D为BC的中点,DE⊥AC于E,DE=6,AC=16.
(1)求证:DE与⊙O相切;
(2)求直径AB的长.

查看答案和解析>>

同步练习册答案