精英家教网 > 初中数学 > 题目详情
已知关于x的方程x2-2(k-3)x+k2-4k-1=0.
(1)若这个方程有实数根,求k的取值范围;
(2)若这个方程有一个根为1,求k的值;
(3)若以方程x2-2(k-3)x+k2-4k-1=0的两个根为横坐标、纵坐标的点恰在反比例函数的图象上,求满足条件的m的最小值.
【答案】分析:(1)若一元二次方程有实数根,则根的判别式△=b2-4ac≥0,建立关于k的不等式,求出k的取值范围.
(2)将x=1代入方程,得到关于k的方程,求出即可,
(3)写出两根之积,两根之积等于m,进而求出m的最小值.
解答:解:(1)由题意得△=[-2(k-3)]2-4×(k2-4k-1)≥0
化简得-2k+10≥0,解得k≤5.
(2)将1代入方程,整理得k2-6k+6=0,解这个方程得
(3)设方程x2-2(k-3)x+k2-4k-1=0的两个根为x1,x2
根据题意得m=x1x2.又由一元二次方程根与系数的关系得x1x2=k2-4k-1,
那么m=k2-4k-1=(k-2)2-5,所以,当k=2时m取得最小值-5.
点评:一元二次方程根的判别式和根与系数的关系,是一个综合性的题目,也是一个难度中等的题目.总结:一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知关于x的方程x2+kx+1=0和x2-x-k=0有一个根相同,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绵阳)已知关于x的方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•西城区二模)已知关于x的方程x2+3x=8-m有两个不相等的实数根.
(1)求m的最大整数是多少?
(2)将(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2(k+1)x+k2=0有两个实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-(3k+1)x+2k2+2k=0
(1)求证:无论k取何实数值,方程总有实数根.
(2)若等腰△ABC的一边长为a=6,另两边长b,c恰好是这个方程的两个根,求此三角形的周长.

查看答案和解析>>

同步练习册答案