分析 (1)原式变形后,将已知等式代入计算即可求出值;
(2)原式变形后,将已知等式代入计算即可求出值.
解答 解:(1)∵a+$\frac{1}{a}$=-5,
∴$\frac{3{a}^{2}+5a+3}{a}$=3a+5+$\frac{3}{a}$=3(a+$\frac{1}{a}$)+5=-15+5=-10;
(2)∵x+$\frac{1}{x+1}$=9,
∴x+1≠0,即x≠-1,
∴x+1+$\frac{1}{x+1}$=10,
∵$\frac{{x}^{2}+5x+5}{x+1}$=$\frac{(x+1)^{2}+3(x+1)+1}{x+1}$=x+1+$\frac{1}{x+1}$+3=10+3=13,
∴$\frac{x+1}{{x}^{2}+5x+5}$=$\frac{1}{13}$.
点评 此题考查了分式的值,将所求式子就行适当的变形是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com