精英家教网 > 初中数学 > 题目详情

【题目】如图,直线y= x+1与y轴交于A点,过点A的抛物线y=﹣ x2+bx+c与直线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).

(1)直接写出抛物线的解析式;
(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;
(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?对于所求的t值,平行四边形BCMN是否菱形?请说明理由.

【答案】
(1)

解:∵BC⊥x轴,垂足为点C,C(3,0),

∴B的横坐标为3.

将x=3代入y= x+1得:y=

∴B(3, ).

将x=0代入y= x+1得:y=1.

∴A(0,1).

将点A和点B的坐标代入得: ,解得:b= ,c=1.

∴抛物线的解析式为y=﹣ x2+ x+1


(2)

解:设点P的坐标为(t,0),则N(t,﹣ t2+ t+1),M(t, t+1).

∴S=(﹣ t2+ t+1)﹣( t+1)=﹣ t2+ t.(0<t<3).


(3)

解:∵MN∥BC,

∴当MN=NB时,四边形BCMN为平行四边形.

∴﹣ t2+ t= ,解得t=1或t=2.

∴当t=1或t=2时,四边形BCMN为平行四边形.

当t=1时,M(1, ).

依据两点间的距离公式可知:MC= =

∴MN=MC.

∴四边形BCMN为菱形.

当t=2时,M(2,2),则MC= =

∴MC≠MN.

∴此时四边形BCMN不是菱形.

综上所述,当t=1时,四边形BCMN为菱形


【解析】(1)先求得点B和点A的坐标,然后将原点坐标,点A和点B的坐标代入抛物线的解析式求解即可;(2)设点P的坐标为(t,0),则N(t,﹣ t2+ t+1),M(t, t+1),然后依据MN等于M、N两点的纵坐标之差可得到S与t的函数关系式;(3)已知MN∥BC,故此当MN=NB时,四边形BCMN为平行四边形,然后列出方程组求解即可;当MC=MN时,四边形BCMN为菱形,然后分别将t=1和t=2代入求得点M的坐标,然后再求得MC的长,最后依据MC于是等于MN进行判断即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,中,PA点出发沿路径向终点运动,终点为B点;点QB点出发沿路径向终点运动,终点为APQ分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过PQE问:点P运动多少时间时,QFC全等?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:如图1,ABCD,PAB=130°,PCD=120°.求APC度数.

小明的解题思路是:如图2,过P作PEAB,通过平行线性质,可得APC=50°+60°=110°.

问题迁移:

(1)如图3,ADBC,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=α,BCP=β.试判断CPD、α、β之间有何数量关系?请说明理由;

(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、α、β间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本小题12分小明有5张写着不同数字的卡片请按要求抽出卡片完成下列各问题:

(1)从中取出2张卡片使这2张卡片上数字的乘积最大如何抽取?最大值是多少?

答:我抽取的2张卡片是 乘积的最大值为

(2)从中取出2张卡片使这2张卡片上数字相除的商最小如何抽取?最小值是多少?

答:我抽取的2张卡片是 商的最小值为

(3)从中取出4张卡片用学过的运算方法使结果为24如何抽取?写出运算式子.(写出一种即可

答:我抽取的4张卡片是

算24的式子为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料后解决问题:

小明遇到下面一个问题:

计算(2+1)(22+1)(24+1)(28+1).

经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)

=(2+1)(2﹣1)(22+1)(24+1)(28+1)

=(22﹣1)(22+1)(24+1)(28+1)

=(24﹣1)(24+1)(28+1)

=(28﹣1)(28+1)

=216﹣1

请你根据小明解决问题的方法,试着解决以下的问题:

(1)(2+1)(22+1)(24+1)(28+1)(216+1)=_____

(2)(3+1)(32+1)(34+1)(38+1)(316+1)=_____

(3)化简:(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+1(a<0)的图象过点(1,0)和(x1 , 0),且﹣2<x1<﹣1,下列5个判断中:①b<0;②b﹣a<0;③a>b﹣1;④a<﹣ ;⑤2a<b+ ,正确的是(
A.①③
B.①②③
C.①②③⑤
D.①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线AB:y=x+分别交x轴、y轴于点B、A两点,C(3,0),D、E分别为线段AO和线段AC上一动点,BEy轴于点H,AD=CE.当BD+BE的值最小时,则H点的坐标为(

A. (0,4) B. (0,5) C. (0, D. (0,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BC,ADBC,垂足为D,AE平分BAC.已知B=65°DAE=20°,求C的度数.

查看答案和解析>>

同步练习册答案