精英家教网 > 初中数学 > 题目详情
已知在平面直角坐标系xOy中,抛物线y=ax2+2x经过点A(4,0),顶点为B.
(1)求顶点B的坐标;
(2)将这条抛物线向左平移后与y轴相交于点C,此时点A移动到点D的位置,且∠DBA=∠CBO,求平移后抛物线的表达式.
(1)∵抛物线y=ax2+2x经过点A(4,0),
∴0=16a+8.
∴a=-
1
2

∴抛物线的表达式为y=-
1
2
x2+2x,
∴y=-
1
2
x2+2x=-
1
2
(x2-4x+22-4)=-
1
2
(x-2)2+2.
顶点B的坐标为(2,2);

(2)解法一:设平移后抛物线的表达式为y=-
1
2
x2+bx+c.
∵点B的坐标为(2,2),
∴AB=OB=2
2
,∠BAD=∠BOC=45°.
又∵∠DBA=∠CBO,
∴△ABD≌△OBC.
∴AD=OC,即平移的距离为c.
∴点D的坐标为(4-c,0).
∴0=-
1
2
(4-c)2+b(4-c)+c.
又∵平移后抛物线的对称轴为x=b.
∴b=2-c.
∴0=-
1
2
(4-c)2+(2-c)(4-c)+c..
解得c=2或c=0(不符合题意,舍去).
∴平移后抛物线的表达式为y=-
1
2
x2+2.
解法二:∵原抛物线表达式为y=-
1
2
x(x-4),
∴设平移后抛物线表达式为y=-
1
2
(x+m)(x-4+m)(m>0,向左平移的距离).
即y=-
1
2
x2-(m-2)x-
1
2
m2+2m.
∵B的坐标为(2,2),
∵AB=OB=2
2
,∠BAD=∠BOC=45°,
又∵∠DBA=∠CBO,
∴△ABD≌△OBC.
∴AD=OC,即m=-
1
2
m2+2m.解得m=2或m=0(不符合题意,舍去).
∴平移后抛物线的表达式为:y=-
1
2
x2+2.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(人教版)已知:二次函数y=x2-(m+1)x+m的图象交x轴于A(x1,0)、B(x2,0)两点,交y轴正半轴于点C,且x12+x22=10.
(1)求此二次函数的解析式;
(2)是否存在过点D(0,-
5
2
)的直线与抛物线交于点M、N,与x轴交于点E,使得点M、N关于点E对称?若存在,求直线MN的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知以E(3,0)为圆心,以5为半径的⊙E与x轴交于A,B两点,与y轴交于C点,抛物线y=ax2+bx+c经过A,B,C三点,顶点为F.
(1)求A,B,C三点的坐标;
(2)求抛物线的解析式及顶点F的坐标;
(3)已知M为抛物线上一动点(不与C点重合),试探究:
①使得以A,B,M为顶点的三角形面积与△ABC的面积相等,求所有符合条件的点M的坐标;
②若探究①中的M点位于第四象限,连接M点与抛物线顶点F,试判断直线MF与⊙E的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0),C(0,-2)
(1)求这条抛物线的函数表达式;
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DEPC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,以点A(3,0)为圆心,以5为半径的圆与x轴相交于点B、C,与y轴相交于点D、E.
(1)若抛物线y=
1
4
x2+bx+c
经过C、D两点,求此抛物线的解析式并判断点B是否在此抛物线上.
(2)若在(1)中的抛物线的对称轴有一点P,使得△PBD的周长最短,求点P的坐标.
(3)若点M为(1)中抛物线上一点,点N为其对称轴上一点,是否存在以点B、C、M、N为顶点的平行四边形?若存在,直接写出点M、N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=
8
2
5
x2+bx+c经过点A(
3
2
,0)和点B(1,2
2
),与x轴的另一个交点为C.
(1)求抛物线的函数表达式;
(2)点D在对称轴的右侧,x轴上方的抛物线上,且∠BDA=∠DAC,求点D的坐标;
(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE.
①判断四边形OAEB的形状,并说明理由;
②点F是OB的中点,点M是直线BD的一个动点,且点M与点B不重合,当∠BMF=
1
3
∠MFO时,请直接写出线段BM的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用12m长的栅栏围成一个中间被隔断的鸭舍(栅栏占地面积忽略不计).

(1)如图1,当AB=______m,BC=______m时,所围成两间鸭舍的面积最大,最大值为______m2
(2)如图2,若现有一面长4m的墙可以利用,其余三方及隔断使用栅栏,所围成两间鸭舍面积和的最大值是多少______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店购买一批单价为20元的日用品,如果以单价30元销售,那么半月内可以售出400件.据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高一元,销售量相应减少20件.如何提高销售价,才能在半月内获得最大利润?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:
(1)写出方程ax2+bx+c=0的两个根;
(2)当x为何值时,y>0;y<0?
(3)写出y随x的增大而减小的自变量x的取值范围.

查看答案和解析>>

同步练习册答案