精英家教网 > 初中数学 > 题目详情
(2002•扬州)如图,在平面直角坐标系中,以点A(-1,0)为圆心,AO为半径的圆交x轴负半轴于另一点B,点F在⊙A上,过点F的切线交y轴正半轴于点E,交x轴正半轴于点C,已知CF=
(1)求点C的坐标;
(2)求证:AE∥BF;
(3)延长BF交y轴于点D,求点D的坐标及直线BD的解析式.

【答案】分析:(1)因为以点A(-1,0)为圆心,AO为半径的圆交x轴负半轴于另一点B,点F在⊙A上,过点F的切线交y轴正半轴于点E,交x轴正半轴于点C,可连接AF,由切线的性质可得∠AFC=90°,因为CF=,由勾股定理可求AC===3,进而求出C的坐标;
(2)根据OA⊥OD,AO是半径,可得OD是⊙A的切线,因为EF是⊙A的切线,所以EF=EO,进而可证△AFE≌△AOE,
得∠EAC=∠FAE=∠FAO,因为∠B=∠FAO,所以∠B=∠EAC,AE∥BF.
(3)可作FM⊥BC于M,利用直角三角形的面积可求FM==,利用勾股定理可求MC==,进而求出OM=MC-OC,写出F的坐标即可;
因为延长BF交y轴于点D,已知B、F的坐标,所以可设BF为y=kx+b,利用待定系数法求出直线BD的解析式为y=x+,令x=0,求出y的值,即可求出D的坐标.
解答:(1)解:因为以点A(-1,0)为圆心,AO为半径的圆交x轴负半轴于另一点B,点F在⊙A上,过点F的切线交y轴正半轴于点E,交x轴正半轴于点C,连接AF.
所以OA=AB=AF=1,∠AFC=90°,
因为CF=,由勾股定理得AC===3.
所以OC=3-1=2,
所以C(2,0).

(2)证明:∵OA⊥OD,AO是半径,
∴OD是⊙A的切线.
∵EF是⊙A的切线,
∴EF=EO
∵AE=AE,AF=AO,
∴△AFE≌△AOE.
∴∠EAC=∠FAE=∠FAO,
∵∠B=∠FAO,
∴∠B=∠EAC.
∴AE∥BF.

(3)解:作FM⊥BC于M,因为FM==,MC==,OM=MC-OC=
∴F(-).
设BF为y=kx+b,

解之,得
所以直线BD的解析式为y=x+
令x=0,则y=,所以D(0,).
点评:本题需综合利用待定系数法、勾股定理、圆的切线来解决问题.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2002•扬州)如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源:2002年江苏省扬州市中考数学试卷(解析版) 题型:解答题

(2002•扬州)如图,在平面直角坐标系中,以点A(-1,0)为圆心,AO为半径的圆交x轴负半轴于另一点B,点F在⊙A上,过点F的切线交y轴正半轴于点E,交x轴正半轴于点C,已知CF=
(1)求点C的坐标;
(2)求证:AE∥BF;
(3)延长BF交y轴于点D,求点D的坐标及直线BD的解析式.

查看答案和解析>>

科目:初中数学 来源:2002年江苏省扬州市中考数学试卷(解析版) 题型:解答题

(2002•扬州)如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源:2002年江苏省扬州市中考数学试卷(解析版) 题型:解答题

(2002•扬州)如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB=24cm,CD=8cm.
(1)求作此残片所在的圆(不写作法,保留作图痕迹);
(2)求(1)中所作圆的半径.

查看答案和解析>>

同步练习册答案