精英家教网 > 初中数学 > 题目详情
8.某商场将一件玩具按进价提高50%后标价,销售时按标价打折销售,结果相对于进价仍获利20%,则这件玩具销售时打的折扣是(  )
A.7.5折B.8折C.6折D.3.3折

分析 设这件玩具的进价为a元,标价为a(1+50%)元,再设打了x折,再由打折销售仍获利20%,可得出方程,解出即可.

解答 解:设这件玩具的进价为a元,打了x折,依题意有
a(1+50%)$\frac{x}{10}$-a=20%a,
解得:x=8.
答:这件玩具销售时打的折扣是8折.
故选:B.

点评 此题考查一元一次方程的实际运用,掌握销售问题中的基本数量关系是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.一个正方形的边长为3,则它的对角线长为(  )
A.3B.3$\sqrt{2}$C.$\sqrt{6}$D.2$\sqrt{6}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知如图,圆P经过点A(-4,0),点B(6,0),交y轴于点C,∠ACB=45°,连结AP、BP.
(1)求圆P的半径;
(2)求OC长;
(3)在圆P上是否存在点D,使△BCD的面积等于△ABC的面积?若存在求出点D坐标;若不存在说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.一个不等式的解集在数轴上表示如图所示,则这个不等式可能是(  )
A.x>-1B.x≥-1C.x<-1D.x≤-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知抛物线的解析式为y=mx2(m>0)和点F(0,$\frac{1}{4}$),A为抛物线上不同于原点的任意一点,过点A的直线l交抛物线于另一点B,交y轴于点D(点D在F点上方),且有FA=FD.当△ADF为正三角形时,AF=1.
(1)求m的值;
(2)当直线l1∥l且与抛物线仅交于一点E时,小明通过研究发现直线AE可能过定点,请你说明直线AE可能过定点的猜想过程,并写出猜得的定点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知一次函数的图象经过(2,5)和(-1,2)两点.
(1)求此一次函数的解析式;
(2)用描点法在坐标系中画出这个函数的图象,求函数图象与x轴交点A、与y轴交点B的坐标;
(3)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,抛物线y=-x2+bx+c的顶点为Q,抛物线与x轴交于A(-1,0),B(5,0)两点,与y轴交于点C.
(1)求抛物线的解析式及其顶点Q的坐标;
(2)在该抛物线上求一点P,使得S△PAB=S△ABC,求出点P的坐标:
(3)若点D是第一象限抛物线上的一个动点,过点D作DE⊥x轴,垂足为E.有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点D运动至点Q时,折线D-E-O的长度最长.”这个同学的说法正确吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.
(1)求∠DCE的度数;
(2)若AB=4,CD=3AD,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列四个数中,最小的数是(  )
A.1B.0C.-3D.-$\sqrt{5}$

查看答案和解析>>

同步练习册答案