精英家教网 > 初中数学 > 题目详情
如图,在矩形OABC中,已知A,C两点的坐标分别为A(4,0),C(0,2),点D精英家教网是OA的中点;设点P是∠AOC平分线上的一个动点(不与点O重合).
(1)试证明:无论点P运动到何处,PC与PD总相等;
(2)当点P运动到与点B的距离最小时,试确定过O,P,D三点的抛物线的解析式;
(3)设点N是矩形OABC的对称中心,是否存在点P,使∠CPN=90°?若存在,请写出P点的坐标;若不存在,请说明理由.
分析:(1)证简单的线段相等,可证线段所在的三角形全等,结合本题,证△COP≌△DOP即可;已知OC=OD=3,OP=OP,∠COP=∠DOP=45°,由SAS即可得证;
(2)设射线OP与BC的交点为F,易知△COF是等腰直角三角形,则CF=OC=BF=2;过B作OP的垂线,那么此时P、B距离最短,过P作PM⊥BC于M,易证得△BPF也是等腰直角三角形,即可求得PM、FM的长,从而求出点P的坐标,而O、B的坐标已知,即可利用待定系数法求得抛物线的解析式;
(3)由于矩形的对称中心是对角线的交点,那么它的坐标应该是(2,1);此题应该分两种情况:
①由于射线交BC于F(2,2),显然F点符合点P的要求,
②当P点在N点下方时,设出点P的坐标,可分别表示出直线CP、DP的斜率,若∠CPN=90°,那么两个斜率的积为-1,可据此求出点P的坐标.
解答:精英家教网解:(1)∵点D是OA的中点,
∴OD=OC,
又∵OP是∠COD的角平分线,
∴∠POC=∠POD=45°,
∴△POC≌△POD,故PC=PD;

(2)过点B作∠AOC的平分线的垂线,垂足为P,点P即为所求,
易知点F的坐标为(2,2),故BF=2,作PM⊥BF,
∵△PBF是等腰直角三角形,
∴PM=
1
2
BF=1,
∴点P的坐标为(3,3)
由于抛物线经过原点,可设抛物线的解析式为y=ax2+bx,
又∵抛物线经过点P(3,3)和点D(2,0)
9a+3b=3
4a+2b=0

解得
a=1
b=-2

∴抛物线的解析式为y=x2-2x.

(3)假设存在符合条件的P点.
矩形的对称中心为对角线的交点,故N(2,1).
①当P点在N点上方时;由(2)知F(2,2),且∠NFC=90°,显然F点符合P点的要求,
故P(2,2)
②当P点在N点下方时;设P(a,a),则:
∵C(0,2),N(2,1)
由勾股定理得,CP2+PN2=CN2,即a2+(a-2)2+(2-a)2+(1-a)2=5,即4a2-10a+4=0
解得a=
1
2
或a=2,
故P(
1
2
1
2

综上可知:存在点P,使∠CPN=90°,其坐标为(
1
2
1
2
)或(2,2).
点评:此题主要考查了矩形的性质、全等三角形的判定和性质、二次函数解析式的确定、直角三角形的判定、互相垂直的两直线的斜率关系等知识,综合性强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在矩形OABC中,已知A、C两点的坐标分别为A(4,0)、C(0,2),D为OA的中点.设点这P是∠AOC平分线上的一个动点(不与点O重合).
(1)填空:无论点P运动到何处,PC
 
PD(填“>”、“<”或“=”);
(2)当点P运动到与点B的距离最小时,试确定过O、P、D三点的抛物线的解析式;
(3)设点E是(2)中所确定抛物线的顶点,当点P运动到何处时,△PDE的周长最小?求精英家教网出此时点P的坐标和△PDE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形OABC中,已知A、C两点的坐标分别为A(4,0)、C(0,2),D为OA的中点.设点P是∠AOC精英家教网平分线上的一个动点(不与点O重合).
(1)试证明:无论点P运动到何处,PC总与PD相等;
(2)当点P运动到与点B的距离最小时,试确定过O、P、D三点的抛物线的解析式;
(3)设点E是(2)中所确定抛物线的顶点,当点P运动到何处时,△PDE的周长最小?求出此时点P的坐标和△PDE的周长;
(4)设点N是矩形OABC的对称中心,是否存在点P,使∠CPN=90°?若存在,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形OABC中,AB∥x轴.函数y=
1x
(x>0)
的图象分别交AB、BC边于P、Q两点,且P是精英家教网AB的中点,设点P的横坐标为a.
(1)用含a的代数式表示点Q的坐标.
(2)试说明点Q是BC的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•莆田质检)如图,在矩形OABC中,OA、OC两边分别在x轴、y轴的正半轴上,OA=3,OC=2,过OA边上的D点,沿着BD翻折△ABD,点A恰好落在BC边上的点E处,反比例函数y=
kx
(k>0)在第一象限上的图象经过点E与BD相交于点F.
(1)求证:四边形ABED是正方形;
(2)点F是否为正方形ABED的中心?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•永春县质检)如图,在矩形OABC中,点A、C的坐标分别是(a,0),(0,
3
),点D是线段BC上的动点(与B、C不重合),过点D作直线l:y=-
3
x+b
交线段OA于点E.
(1)直接写出矩形OABC的面积(用含a的代数式表示);
(2)已知a=3,当直线l将矩形OABC分成周长相等的两部分时
①求b的值;
②梯形ABDE的内部有一点P,当⊙P与AB、AE、ED都相切时,求⊙P的半径.
(3)已知a=5,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,设CD=k,当k满足什么条件时,使矩形OABC和四边形O1A1B1C1的重叠部分的面积为定值,并求出该定值.

查看答案和解析>>

同步练习册答案