精英家教网 > 初中数学 > 题目详情
3.若点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,则△ABC的面积为2-$\sqrt{3}$或2+$\sqrt{3}$.

分析 根据题意可以画出相应的图形,然后根据不同情况,求出相应的边的长度,从而可以求出不同情况下△ABC的面积,本题得以解决.

解答 解:由题意可得,如右图所示
存在两种情况,
当△ABC为△A1BC时,连接OB、OC,
∵点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,OB=OC,
∴△OBC为等边三角形,OB=OC=BC=2,OA1⊥BC于点D,
∴CD=1,OD=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
∴S△A1BC=$\frac{1}{2}$BC•A1D=2-$\sqrt{3}$,
当△ABC为△A2BC时,连接OB、OC,
∵点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,OB=OC,
∴△OBC为等边三角形,OB=OC=BC=2,OA1⊥BC于点D,
∴CD=1,OD=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
∴S△A2BC=$\frac{1}{2}$BC•A2D=$\frac{2(2+\sqrt{3})}{2}$=2+$\sqrt{3}$,
由上可得,△ABC的面积为2-$\sqrt{3}$或2+$\sqrt{3}$,
故答案为2-$\sqrt{3}$或2+$\sqrt{3}$.

点评 本题考查三角形的外接圆和外心,等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.如何求tan75°的值?按下列方法作图可解决问题,如图,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延长CB至点M,在射线BN上截取线段BD,使BD=AB,连接AD,依据此图可求得tan75°的值为(  )
A.2$-\sqrt{3}$B.2+$\sqrt{3}$C.1+$\sqrt{3}$D.$\sqrt{3}-1$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,线段CD两个端点的坐标分别为C(-1,2),D(-3,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(-5,0),则点A的坐标为(  )
A.(-3,5)B.(-2,5)C.(-2,6)D.(-$\frac{5}{3}$,$\frac{10}{3}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.为了对一棵倾斜的古杉树AB进行保护,需测量其长度.如图,在地面上选取一点C,测得∠ACB=45°,AC=21m,∠BAC=53°,求这颗古杉树AB的长度.
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,将等腰△ABC绕顶点B逆时针方向旋转40°得到△A1B1C1,AB与A1C1相交于点D,A1C1、BC1与AC分别交于点E、F.
(1)求证:△BCF≌△BA1D;
(2)当∠C=40°时,请你证明四边形A1BCE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.
(1)求证:AC平分∠DAB;
(2)连接CE,若CE=6,AC=8,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.《九章算术》是中国传统数学最重要的著作,方程术是《九章算术》最高的数学成就.《九章算术》中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?译文:假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少?若设每头牛值金x两,每只羊值金y两,可列方程组为$\left\{\begin{array}{l}{5x+2y=10}\\{2x+5y=8}\end{array}\right.$,.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某商店试销一种新商品,该商品的进价为40元/件,经过一段时间的试销发现,每月的销售量会因售价在40~70元之间的调整而不同.当售价在40~50元时,每月销售量都为60件;当售价在50~70元时,每月销售量与售价的关系如图所示,令每月销售量为y件,售价为x元/件,每月的总利润为Q元.
(1)当售价在50~70元时,求每月销售量为y与x的函数关系式?
(2)当该商品售价x是多少元时,该商店每月获利最大,最大利润是多少元?
(3)若该商店每月采购这种新商品的进货款不低于1760元,则该商品每月最大利润为792元.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在平面直角坐标系中,抛物线y=-x2+4x与x轴交于点A,点M是x轴上方抛物线上一点,过点M作MP⊥x轴于点P,以MP为对角线作矩形MNPQ,连结NQ,则对角线NQ的最大值为4.

查看答案和解析>>

同步练习册答案