精英家教网 > 初中数学 > 题目详情
某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30,且x为整数);又知前20天的销售价格Q1(元/件)与销售时间x(天)之间有如下关系:Q1=x+30(1≤x≤20,且x为整数),后10天的销售价格Q2(元/件)与销售时间x(天)之间有如下关系:Q2=45(21≤x≤30,且x为整数).
(1)试写出该商店前20天的日销售利润R1(元)和后10天的日销售利润R2(元)分别与销售时间x(天)之间的函数关系式;
(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.
注:销售利润=销售收入-购进成本.
【答案】分析:(1)运用营销问题中的基本等量关系:销售利润=日销售量×一件销售利润.一件销售利润=一件的销售价-一件的进价,建立函数关系式;
(2)分析函数关系式的类别及自变量取值范围求最大值;其中R1是二次函数,R2是一次函数.
解答:解:(1)根据题意,得
R1=P(Q1-20)=(-2x+80)[(x+30)-20],
=-x2+20x+800(1≤x≤20,且x为整数),
R2=P(Q2-20)=(-2x+80)(45-20),
=-50x+2000(21≤x≤30,且x为整数);

(2)在1≤x≤20,且x为整数时,
∵R1=-(x-10)2+900,
∴当x=10时,R1的最大值为900,
在21≤x≤30,且x为整数时,
∵R2=-50x+2000,-50<0,R2随x的增大而减小,
∴当x=21时,R2的最大值为950,
∵950>900,
∴当x=21即在第21天时,日销售利润最大,最大值为950元.
点评:本题需要反复读懂题意,根据营销问题中的基本等量关系建立函数关系式,根据时间段列出分段函数,再结合自变量取值范围分别求出两个函数的最大值,并进行比较,得出结论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30,且x为整数);又知前20天的销售价格Q1(元/件)与销售时间x(天)之间有如下关系:Q1=
12
x+30(1≤x≤20,且x为整数),后10天的销售价格Q2(元/件)与销售时间x(天)之间有如下关系:Q2=45(21≤x≤30,且x为整数).
(1)试写出该商店前20天的日销售利润R1(元)和后10天的日销售利润R2(元)分别与销售时间x(天)之间的函数关系式;
(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.
注:销售利润=销售收入-购进成本.

查看答案和解析>>

科目:初中数学 来源: 题型:

某大学毕业生响应国家“自主创业”的号召,投资开办了一个玩具商店.该店对今年新上市玩具熊进行了30天的试销售,这种玩具熊进价为25元/个.在这段试营销期间,玩具熊的日销售量P(个)与销售时间t(天)之间有如下关系:P=-2t+100(1≤t≤30,且t为整数);销售价格Q(元/个)与销售时间t(天)之间有如下关系:Q=
12
t+40
(1≤t≤30,且t为整数),
(1)写出该商店试销售期间的日销售利润S (元)和与销售时间t(天)之间的函数关系式,并求出试销售期间的最大日销售利润;
(2)试销售结束后,该大学毕业生发现若以试销售的第30天的销售价作为正式销售价,价格显得偏高而销售量显得偏低,于是决定将试销售的第30天的销售价适当降低进行正式销售.经市场调查发现,每降价1元,每天可多卖出4个.试问:需降价多少元可使正式销售期间每天的销售利润与试销售期间的最大日销售利润相同?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2014•宁波一模)某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店,某装饰品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查发现:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的利润为W元.
(1)求W与x的函数关系式及自变量x的取值范围;
(2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店,某装饰品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查发现:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的利润为W元.
(1)求W与x的函数关系式及自变量x的取值范围;
(2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:四川省中考真题 题型:解答题

某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店,该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件。销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30,且x为整数);又知前20天的销售价格Q1(元/件)与销售时间x(天)之间有如下关系:(1≤x≤20,且x为整数),后10天的销售价格Q2(元/件)与销售时间x(天)之间有如下关系:Q2=45(21≤x≤30,且x为整数)。
(1)试写出该商店前20天的日销售利润R1(元)和后10天的日销售利润R2(元)分别与销售时间x(天)之间的函数关系式;
(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润。
注:销售利润=销售收入-购进成本

查看答案和解析>>

同步练习册答案