精英家教网 > 初中数学 > 题目详情
11.已知,如图,以矩形ABCD的一边CD为边向外作等边△PCD,请你用无刻度的直尺作出线段AB的垂直平分线(保留作图痕迹)

分析 连接矩形ABCD的对角线AC、BD,相交于点O,过O,P作直线,则直线OP就是线段AB的垂直平分线.

解答 解:如图所示,直线OP即为所求.

点评 本题主要考查了复杂作图,线段垂直平分线的性质,等边三角形的性质以及矩形性质的运用,解决问题的关键是掌握:矩形的对角线相等且互相平分,矩形是轴对称图形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.探究:已知m=2$\sqrt{2}$+3,n=2$\sqrt{2}$-3.
则(1)m+n=4$\sqrt{2}$;
(2)mn=-1;
(3)m2+n2=34;
(4)m2-n2=24$\sqrt{2}$;
(5)m2-2mn+n2=36.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知|a|=5,|b|=2.
(1)若a<0,b>0,求3a-2b的值;
(2)若a>0,b<0,|c-2|=1,求2abc+|b-c|的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示).回答下列问题:
(1)设这个苗圃园垂直于墙的一边的长为x米,则平行于墙的一边长为30-2x;(用含x的代数式表示)
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.列方程解应用题:某人出差带回了外地的某种特产若干袋,分给朋友们品尝,如果每人分5袋,还余3袋;如果每人分6袋,还差3袋.问这人带回特产共多少袋?一共分给了多少个朋友?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:3$\sqrt{48}$-9$\sqrt{\frac{1}{3}}$+2$\sqrt{12}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.探究题:
$\sqrt{{3}^{2}}$=3,$\sqrt{0.{5}^{2}}$=0.5,$\sqrt{(-6)^{2}}$=6,$\sqrt{(-\frac{3}{4})^{2}}$=$\frac{3}{4}$,$\sqrt{{0}^{2}}$=0.
根据计算结果,回答:
(1)$\sqrt{{a}^{2}}$一定等于a吗?如果不是,那么$\sqrt{{a}^{2}}$=|a|;
(2)利用你总结的规律,计算:
①若x<2,则$\sqrt{(x-2)^{2}}$=2-x;
②$\sqrt{(3.14-π)^{2}}$=π-3.14.
(3)若a,b,c为三角形的三边长,化简:$\sqrt{(a+b-c)^{2}}$+$\sqrt{(b-c-a)^{2}}$+$\sqrt{(b+c-a)^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,长方形纸片CD沿MN折叠(M,N在AD、BC上),AD∥BC,C′,D′为C、D的对称点,C′N交AD于E.
(1)若∠1=62°,则∠2=56°;
(2)试判断△EMN的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.解方程:
(1)x2+2x=2x+1
(2)(2y+1)2+3(2y+1)+2=0.

查看答案和解析>>

同步练习册答案