【题目】在平面直角坐标系中,抛物线经过点和.
(1)求抛物线的表达式和顶点坐标;
(2)将抛物线在A、B之间的部分记为图象M(含A、B两点).将图象M沿直线翻折,得到图象N.若过点的直线与图象M、图象N都相交,且只有两个交点,求b的取值范围.
科目:初中数学 来源: 题型:
【题目】某数学兴趣小组在用黑色围棋进行摆放图案的游戏中,一同学摆放了如下图案,请根据图中信息完成下列的问题:
...
(1)填写下表:
图形编号 | ① | ② | ③ | … | … |
图中棋子的总数 | ________ | ________ | ________ | … | … |
(2)第10个图形中棋子为________颗围棋;
(3)该同学如果继续摆放下去,那么第个图案要用________颗围棋;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
23
【题目】一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:
(1)二次函数和反比例函数的关系式.
(2)弹珠在轨道上行驶的最大速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,小彬从该网店购买了3筒甲种羽毛球和2筒乙种羽毛球,一共花费270元.
(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?
(2)根据消费者需求,该网店决定购进甲、乙两种羽毛球各80筒.已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.元旦期间该网店开展优惠促销活动,甲种羽毛球打折销售,乙种羽毛球售价不变,若所购进羽毛球均可全部售出,要使全部售出所购进的羽毛球的利润率是,那么甲种羽毛球是按原销售价打几折销售的.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.
(1)求证:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电视机厂要印制产品宜传材料甲印刷厂提出:每份材料收1元印制费,另收1500元制版费;乙厂提出:每份材料收2.5元印制费,不收制版费.
(1)分别写出两厂的收费元与印制数量 (份)之间的关系式
(2)在同一直角坐标系内画出它们的图象;
(3)根据图像回答下列问题:
①印制800份宣传材料时,选择哪家印刷厂比较合算?
②电视机厂拟拿出3000元用于印制宣传材料,找哪家印刷厂印制宣传材料能多一些?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售某品牌的羽毛球拍和乒乓球拍,羽毛球拍每副定价元,乒乓球拍每副定价元.店庆期间该超市开展促销活动,活动期间向顾客提供两种优惠方案.
方案一:买一副羽毛球拍送一副乒乓球拍;
方案二:羽毛球拍和乒乓球拍都按定价的付款.
现某校要到该超市购买羽毛球拍副,乒乓球拍副()
(1)若该校按方案一购买,需付款____元;(用含的代数式表示),若该校按方案二购买,需付款_____元.(用含的代数式表示)
(2)当取何值时,两种方案一样优惠?
(3)当时,通过计算说明此时按哪种方案购买较为合算?你能给出一种更为省钱的购买方法吗?请写出你的购买方法,并计算需付款多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】安岳是有名的“柠檬之乡”,某超市用3000元进了一批柠檬销售良好;又用7700元购来一批柠檬,但这次的进价比第一批高了10%,购进数量是第一批的2倍多500斤.
(1)第一批柠檬的进价是每斤多少元?
(2)为获得更高利润,超市决定将第二批柠檬分成大果子和小果子分别包装出售,大果子的售价是第一批柠檬进价的2倍,小果子的售价是第一批柠檬进价的1.2倍.问大果子至少要多少斤才能使第二批柠檬的利润不低于3080元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有、、三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )
A.在∠A、∠B两内角平分线的交点处
B.在AC、BC两边垂直平分线的交点处
C.在AC、BC两边高线的交点处
D.在AC、BC两边中线的交点处
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com