精英家教网 > 初中数学 > 题目详情
如图,已知点C是
AB
的中点,半径OC与弦AB相交于D,如果∠OAB=60°,AB=8厘米,那么∠AOD=
30
30
度; CD=
8-4
3
8-4
3
厘米.
分析:易证得△AOB是等边三角形,则∠AOB=∠OAB=60°,AB=OA=8厘米;由圆心角、弧、弦的关系可知∠AOD=
1
2
∠AOB=30°,所以通过解直角△AOD求得OD=4
3
厘米,故CD=OC-OD=OA-OD=8-4
3
(厘米).
解答:解:如图,∵OA=OB,∠OAB=60°,
∴△AOB是等边三角形,则∠AOB=∠OAB=60°,AB=OA=8厘米.
又∵C是
AB
的中点,
∴∠AOD=
1
2
∠AOB=30°,AB⊥OC,
∴OD=OAcos30°=4
3
(厘米)
∴CD=OC-OD=OA-OD=8-4
3
(厘米).
故答案是:8-4
3
点评:本题考查了垂径定理、勾股定理.此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知点D是AB边的中点,AF∥BC,CG:GA=3:1,BC=8,则AF=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,已知点C是AB上一点,△ACM、△CBN都是等边三角形.

(1)△ACN≌△MCB吗?为什么?
(2)说明CE=CF;
(3)若△CBN绕着点C旋转一定的角度(如图2),则上述2个结论还成立吗?(此问只须写出判断结论,不要求说理)

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知点C是AB上一点,△ACM、△CBN都是等边三角形.
(1)说明AN=MB;
(2)将△ACM绕点C按逆时针旋转180°,使A点落在CB上,请对照原题图画出符合要求的图形;
(3)在(2)所得到的图形中,结论“AN=BM”是否成立?若成立,请说明理由;若不成立,也请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点C是AB上一点,△ACM、△CBN都是等边三角形.说明AN=MB.

查看答案和解析>>

同步练习册答案