精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).
(1)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行,为什么?
(2)连接DP,当t为何值时,四边形EQDP能成为平行四边形?
(3)当t为何值时,△EDQ为直角三角形?
分析:(1)先用t表示出PC及CQ的长,再求出
PC
AC
=
QC
BC
,即可得出结论;
(2)先由PE∥CD,得△APE∽△ACD,根据相似三角形的对应边的比相等,求出PE的长,再根据四边形EQDP是平行四边形,得PE=DQ,可用含t的代数式表示出DQ的长,联立PE的表达式列方程求出t的值即可;
(3)由于∠EDQ≠90°,所以当△EDQ为直角三角形时,可分两种情况进行讨论:①∠EQP=90°;②∠QED=90°.两种情况都可以通过证明三角形相似,列出比例关系式,从而求出t的值.
解答:解:(1)如图1,
∵点P以1厘米/秒的速度从点A沿AC向终点C运动,点Q以1.25厘米/秒的速度从点B沿BC向终点C运动,
∴AP=t,BQ=1.25t,
∴PC=AC-AP=4-t,QC=BC-BQ=5-1.25t,
PC
AC
=
4-t
4
=1-
t
4
QC
BC
=
5-1.25t
5
=1-
t
4

PC
AC
=
QC
BC

∴PQ∥AB;

(2)如图2,∵PE∥CD,
∴△AEP∽△ADC,
EP
DC
=
AP
AC

EP
3
=
t
4

∴EP=
3t
4

∵四边形EQDP是平行四边形,
∴EP=QD,即
3t
4
=2-1.25t,
解得t=1.
故当t为1秒时,四边形EQDP能成为平行四边形;

(3)分两种情况讨论:
①如图3,当∠EQD=90°时,显然有EQ=PC=4-t,
又∵EQ∥AC,
∴△EDQ∽△ADC,
EQ
AC
=
DQ
DC
,即
4-t
4
=
1.25t-2
3

解得t=2.5(秒);
②如图4,当∠QED=90°时,作EM⊥BC于M,CN⊥AD于N,则四边形EMCP是矩形,EM=PC=4-t.
在Rt△ACD中,∵AC=4厘米,CD=3厘米,
∴AD=
AC2+CD2
=5,
∴CN=
AC•CD
AD
=
12
5

∵∠EDQ=∠CDA,∠QED=∠ACD=90°,
∴△EDQ∽△CDA,
DQ
AD
=
EM
CN

1.25t-2
5
=
4-t
12
5

解得t=3.1(秒).
综上所述,当t=2.5秒或t=3.1秒时,△EDQ为直角三角形.
点评:本题考查的是相似三角形综合题,涉及到相似三角形的判定与性质、平行四边形的及直角三角形的性质,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案