【题目】如图,△ABC是等边三角形,D,E分别是AC,BC边上的点,且AD=CE,连接BD,AE相交于点F.
(1)∠BFE的度数是多少;
(2)如果,那么等于多少;
(3)如果时,请用含n的式子表示AF,BF的数量关系,并证明.
【答案】(1)∠BFE=60°;(2)=1;(3).证明见解析.
【解析】
(1)易证△ABD≌△ACE,可得∠DAF=∠ABF,根据外角等于不相邻两个内角的和即可解题.
(2)如图1中,当=时,由题意可知:AD=CD,BE=CE.利用等腰三角形的性质即可解决问题;
(3)设AF=x,BF=y,AB=BC=AC=n.AD=CE=1,由△ABD≌△CAE,推出BD=AE,设BD=AE=m,利用相似三角形的性质,列出关系式即可解决问题;
(1)∵△ABC是等边三角形,
∴AB=AC,∠BAD=∠C=60°,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS)
∴∠DAF=∠ABD,
∴∠BFE=∠ABD+∠BAF=∠DAF+∠BAF=∠BAD=60°,
(2)如图1中,当=时,由题意可知:AD=CD,BE=CE.
∵△ABC是等边三角形,BE=EC,AD=CD,
∴∠BAE=∠BAC=×60°=30°,∠ABD=∠ABC=30°,
∴∠FAB=∠FBA,
∴FA=FB,
∴=1.
(3)设AF=x,BF=y,AB=BC=AC=n.AD=CE=1,
∵△ABD≌△CAE,
∴BD=AE,∠DAF=∠ABD,设BD=AE=m,
∵∠ADF=∠BDA,
∴△ADF∽△BDA,
∴,
∴①,
∵∠FBE=∠CBD,∠BFE=∠C=60°,
∴△BFE∽△BCD,
∴,
∴②,
①÷②得到:,
∴.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=4,P是BC边上一动点(不与B,C重合),DE⊥AP于E.
(1)试说明△ADE∽△PAB;
(2)若PA=x,DE=y,请写出y与x之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知抛物线y= 与x轴交于点A(﹣2,0)和点B,与y轴交于点C(0,﹣3),经过点A的射线AM与y轴相交于点E,与抛物线的另一个交点为F,且.
(1)求这条抛物线的表达式,并写出它的对称轴;
(2)求∠FAB的余切值;
(3)点D是点C关于抛物线对称轴的对称点,点P是y轴上一点,且∠AFP=∠DAB,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.
(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);
(2)求△ABC的面积(用含a的代数式表示);
(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是⊙O上一点,连接AC.过点B作⊙O的切线,交AC的延长线于点D,在AD上取一点E,使AE=AB,连接BE,交⊙O于点F.
请补全图形并解决下面的问题:
(1)求证:∠BAE=2∠EBD;
(2)如果AB=5,sin∠EBD=.求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八年级生物兴趣小组租两艘快艇去微山湖生物考察,他们从同一码头出发,第一艘快艇沿北偏西70°方向航行50千米,第二艘快艇沿南偏西20°方向航行50千米,如果此时第一艘快艇不动,第二艘快艇向第一艘快艇靠拢,那么第二艘快艇航行的方向和距离分别是( )
A. 南偏东,千米 B. 北偏西,千米
C. 南偏东,100千米 D. 北偏西,100千米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=k1x+b的图象与反比例函数y2=的图象相交于A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,-4),连接AO,AO=5,sin∠AOC=.
(1)求反比例函数的解析式;
(2)连接OB,求△AOB的面积;
(3)请直接写出当x<m时,y2的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,直线y=6-x与双曲线y=(x>0)的图象相交于点A,B,设点A的坐标为(m,n),那么以m为长、n为宽的矩形的面积和周长分别为( )
A. 4,6 B. 4,12 C. 8,6 D. 8,12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为的正方形中,点为边上的一个动点(与点、不重合),,交对角线于点,交对角线于点,交于点.
如图,联结,求证:,并写出的值;
联结,如图,若设,,求关于的函数解析式,并写出函数的定义域;
当为边的三等分点时,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com