【题目】在平面直角坐标系中,二次函数 y=ax2+bx+2 的图象与 x 轴交于 A(﹣3,0),B(1,0)两点,与 y 轴交于点C.
(1)求这个二次函数的关系解析式 ,x 满足什么值时 y﹤0 ?
(2)点 p 是直线 AC 上方的抛物线上一动点,是否存在点 P,使△ACP 面积最大?若存在,求出点 P的坐标;若不存在,说明理由
(3)点 M 为抛物线上一动点,在 x 轴上是否存在点 Q,使以 A、C、M、Q 为顶点的四边形是平行四边形?若存在,直接写出点 Q 的坐标;若不存在,说明理由.
【答案】(1), 或;(2)P;(3)
【解析】
(1)将点A(﹣3,0),B(1,0)带入y=ax2+bx+2得到二元一次方程组,解得即可得出函数解析式;又从图像可以看出x 满足什么值时 y﹤0;
(2)设出P点坐标,利用割补法将△ACP 面积转化为,带入各个三角形面积算法可得出与m之间的函数关系,分析即可得出面积的最大值;
(3)分两种情况讨论,一种是CM平行于x轴,另一种是CM不平行于x轴,画出点Q大概位置,利用平行四边形性质即可得出关于点Q坐标的方程,解出即可得到Q点坐标.
解:(1)将A(﹣3,0),B(1,0)两点带入y=ax2+bx+2可得:
解得:
∴二次函数解析式为.
由图像可知,当或时y﹤0;
综上:二次函数解析式为,当或时y﹤0;
(2)设点P坐标为,如图连接PO,作PM⊥x轴于M,PN⊥y轴于N.
PM=,PN=,AO=3.
当时,,所以OC=2
,
∵
∴函数有最大值,
当时,有最大值,
此时;
所以存在点,使△ACP 面积最大.
(3)存在,
假设存在点Q使以 A、C、M、Q 为顶点的四边形是平行四边形
①若CM平行于x轴,如下图,有符合要求的两个点此时=
∵CM∥x轴,
∴点M、点C(0,2)关于对称轴对称,
∴M(﹣2,2),
∴CM=2.
由=;
②若CM不平行于x轴,如下图,过点M作MG⊥x轴于点G,
易证△MGQ≌△COA,得QG=OA=3,MG=OC=2,即.
设M(x,﹣2),则有,解得:.
又QG=3,∴,
∴
综上所述,存在点P使以 A、C、M、Q 为顶点的四边形是平行四边形,
Q点坐标为:
.
科目:初中数学 来源: 题型:
【题目】如图,已知边长为1的正方形ABCD,在BC边上有一动点E,连接AE,作EF⊥AE,交CD边于点F.设BE=x,CF=y.
(1)写出y与x的函数关系式.
(2)CF的长可能等于吗?请说明理由.
(3)点E在什么位置时,CF的长为?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点O是△ABC的外心,作正方形OCDE,下列说法:①点O是△AEB的外心;②点O是△ADC的外心;③点O是△BCE的外心;④点O是△ADB的外心.其中一定不成立的说法是( )
A.②④B.①③C.②③④D.①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是( )
A. 60cm2 B. 50cm2 C. 40cm2 D. 30cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级学生某科目学期总评成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果学期总评成绩80分以上(含80分),则评定为“优秀”,下表是小张和小王两位同学的成绩记录:
完成作业 | 单元测试 | 期末考试 | |
小张 | 70 | 90 | 80 |
小王 | 60 | 75 | _______ |
若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定学期总评成绩.
(1)请计算小张的学期总评成绩为多少分?
(2)小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82;八年级10名学生的竞赛成绩在C组中的数据是:94,90,94.
七、八年级抽取的学生竞赛成绩统计表
年级 | 七年级 | 八年级 |
平均数 | 92 | 92 |
中位数 | 93 | b |
众数 | c | 100 |
方差 | 52 | 50.4 |
根据以上信息,解答下列问题:
(1)直接写出上述图表中a,b,c的值;
(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);
(3)该校七、八年级共720人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥90)的学生人数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=a(x﹣3)2+(a≠0)过点C(0,4),顶点为M,与x轴交于A,B两点.如图所示以AB为直径作圆,记作⊙D.
(1)试判断点C与⊙D的位置关系;
(2)直线CM与⊙D相切吗?请说明理由;
(3)在抛物线上是否存在一点E,能使四边形ADEC为平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C作AE的垂线,垂足为D,直线DC与AB的延长线交于点P.
(1)判断直线PC与⊙O的位置关系,并说明理由;
(2)若tan∠P=,AD=6,求线段AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.
(1)求抛物线C2的解析式;
(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;
(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com