精英家教网 > 初中数学 > 题目详情

【题目】一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:

(1)二次函数和反比例函数的关系式.

(2)弹珠在轨道上行驶的最大速度.

【答案】(1)v=(2<t≤5) (2)8米/分

【解析】分析:(1)由图象可知前一分钟过点(1,2),后三分钟时过点(2,8),分别利用待定系数法可求得函数解析式;

(2)把t=2代入(1)中二次函数解析式即可.

详解:(1)v=at2的图象经过点(1,2),

a=2.

∴二次函数的解析式为:v=2t2,(0≤t≤2);

设反比例函数的解析式为v=

由题意知,图象经过点(2,8),

k=16,

∴反比例函数的解析式为v=(2<t≤5);

(2)∵二次函数v=2t2,(0≤t≤2)的图象开口向上,对称轴为y轴,

∴弹珠在轨道上行驶的最大速度在2秒末,为8/分.

点睛:本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息:自变量的取值范围和图象所经过的点的坐标.

型】解答
束】
24

【题目】阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.

(1)在图1中证明小胖的发现;

借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:

(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;

(3)如图3,在ABC中,AB=AC,BAC=m°,点E为ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求EAF的度数(用含有m的式子表示).

【答案】(1)见解析 (2)见解析 (3)

【解析】分析:(1)如图1中,欲证明BD=EC,只要证明DAB≌△EAC即可;

(2)如图2中,延长DCE,使得DB=DE.首先证明BDE是等边三角形,再证明ABD≌△CBE即可解决问题;

(3)如图3中,将AE绕点E逆时针旋转得到AG,连接CG、EG、EF、FG,延长EDM,使得DM=DE,连接FM、CM.想办法证明AFE≌△AFG,可得∠EAF=FAG=m°.

(1)证明:如图1中,

∵∠BAC=DAE,

∴∠DAB=EAC,

DABEAC中,

∴△DAB≌△EAC,

BD=EC.

(2)证明:如图2中,延长DCE,使得DB=DE.

DB=DE,BDC=60°,

∴△BDE是等边三角形,

∴∠BD=BE,DBE=ABC=60°,

∴∠ABD=CBE,

AB=BC,

∴△ABD≌△CBE,

AD=EC,

BD=DE=DC+CE=DC+AD.

AD+CD=BD.

(3)如图3中,将AE绕点E逆时针旋转得到AG,连接CG、EG、EF、FG,延长EDM,使得DM=DE,连接FM、CM.

由(1)可知EAB≌△GAC,

∴∠1=2,BE=CG,

BD=DC,BDE=CDM,DE=DM,

∴△EDB≌△MDC,

EM=CM=CG,EBC=MCD,

∵∠EBC=ACF,

∴∠MCD=ACF,

∴∠FCM=ACB=ABC,

∴∠1=3=2,

∴∠FCG=ACB=MCF,

CF=CF,CG=CM,

∴△CFG≌△CFM,

FG=FM,

ED=DM,DFEM,

FE=FM=FG,

AE=AG,AF=AF,

∴△AFE≌△AFG,

∴∠EAF=FAG=m°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(引例)

如图1,点ABD在同一条直线上,在直线同侧作两个等腰直角三角形△ABC和△BDEBABCBEBD,连接AECD.则AECD的关系是   

(模型建立)

如图2,在△ABC和△BDE中,BABCBEBD,∠ABC=∠DBEα,连接AECD相交于点H.求证:①AECD;②∠AHCα

(拓展应用)

如图3,在四边形ABCD中,对角线ACBD交于点O,∠BDC90°BDCD,∠BAD45°.若AB3AD4,求AC2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】河西中学九年级共有9个班,300名学生,学校要对该年级学生数学学科学业水平测试成绩进行抽样分析,请按要求回答下列问题:

收集数据

(1)若从所有成绩中抽取一个容量为36的样本,以下抽样方法中最合理的是   

①在九年级学生中随机抽取36名学生的成绩;

②按男、女各随机抽取18名学生的成绩;

③按班级在每个班各随机抽取4名学生的成绩.

整理数据

(2)将抽取的36名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图如下.请根据图表中数据填空:

C类和D类部分的圆心角度数分别为   °、   °;

②估计九年级A、B类学生一共有   名.

成绩(单位:分)

频数

频率

A类(80~100)

18

B类(60~79)

9

C类(40~59)

6

D类(0~39)

3

分析数据

(3)教育主管部门为了解学校教学情况,将河西、复兴两所中学的抽样数据进行对比,得下表:

学校

平均数(分)

极差(分)

方差

A、B类的频率和

河西中学

71

52

432

0.75

复兴中学

71

80

497

0.82

你认为哪所学校本次测试成绩较好,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数和一次函数y=k2x+b的图象交于点M(3,﹣)和点N(﹣1,2),则k1=_____,k2=____,一次函数的图象交x轴于点_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一张三角形纸片如图甲,其中将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为如图乙再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为如图丙原三角形纸片ABC中,的大小为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AC=BC,ACB=90°,D为ABC内一点, BAD=15°,AD=AC,CEAD于E,且CE=5.

(1)求BC的长;

(2)求证:BD=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在直角坐标系内的位置如图所示.

1)请直接写出ABC的坐标;

2)请在这个坐标系内画出A1B1C1,使A1B1C1ABC关于y轴对称,并写出B1的坐标;

3)计算A1B1C1面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的直径,弦CDABH,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AGCDK

1)如图1,求证:KE=GE

2)如图2,连接CABG,若∠FGB=ACH,求证:CAFE

3)如图3,在(2)的条件下,连接CGAB于点N,若sinE=AK=,求CN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是_____,(请直接填写序号)

223;②四边形的内角和与外角和相等;③的立方根为4;

④一元二次方程x2﹣6x=10无实数根;

⑤若一组数据7,4,x,3,5,6的众数和中位数都是5,则这组数据的平均数也是5.

查看答案和解析>>

同步练习册答案