精英家教网 > 初中数学 > 题目详情
如图,已知二次函数y=ax2+2x+c(a>0)图象的顶点M在反比例函数y=
3
x
精英家教网,且与x轴交于AB两点.
(1)若二次函数的对称轴为x=-
1
2
,试求a,c的值;
(2)在(1)的条件下求AB的长;
(3)若二次函数的对称轴与x轴的交点为N,当NO+MN取最小值时,试求二次函数的解析式.
分析:(1)根据对称轴x=-
b
2a
=-
1
2
,求得二次函数y=ax2+2x+c(a>0)中的a,再根据顶点在反比例函数y=
3
x
上,求出c即可;
(2)求得抛物线与x轴的交点坐标,再用点B的横坐标减去点A的横坐标即可.
(3)可用含有a的式子表示点M、N的坐标,即求出a的值,再求得解析式.
解答:解:(1)∵二次函数的对称轴为x=-
1
2

∴-
2
2a
=-
1
2

解得a=2,
∵二次函数y=ax2+2x+c(a>0)图象的顶点M在反比例函数y=
3
x
上,
∴顶点为(-
1
2
,c-
1
2
),
1
2
(c-
1
2
)=-3,
解得c=-
11
2

∴二次函数的解析式为y=2x2+2x-
11
2


(2)∵二次函数的解析式为y=2x2+2x-
11
2

∴令y=0,2x2+2x-
11
2
=0;
解得x=
-1±2
3
2

∴AB=
-1+2
3
2
-
-1- 2
3
2
=2
3


(3)根据对称轴x=-
1
a
,当x=-
1
a
时,y=-3a,
∴NO+MN=
1
a
+3a≥2
3a•
1
a
=2
3
,当3a=
1
a
时NO+MN最小,
 即3a2=1时,a=
3
3

∴c=0,
∴此时二次函数的解析式为y=
3
3
x2+2x.
点评:本题是二次函数的综合题,其中涉及到的知识点有最值问题和两点之间的距离等知识点,是各地中考的热点和难点,解题时注意数形结合等数学思想的运用,同学们要加强训练,属于中档题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知二次函数图象的顶点坐标为C(1,1),直线y=kx+m的图象与该二次函数的图象交于A、B两点,其中A点坐标为(
5
2
13
4
),B点在y轴上,直线与x轴的交点为F,P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于E点.
(1)求k,m的值及这个二次函数的解析式;
(2)设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在点P,使得以点P、E、D为顶点的精英家教网三角形与△BOF相似?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax2+bx+3(a≠0)的图象与x轴交于点A(-1,0)和点B(3,0)两点(点A在点B的左边),与y轴交于点C.
(1)求此二次函数的解析式,并写出它的对称轴;
(2)若直线l:y=kx(k>0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得以B,O,D为顶点的三角形与△BAC相似?若存在,求出点D的坐标;若不存在,请说明理由;
(3)若直线l′:y=m与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+b与该二次函数的图象交于A、B两点,其中点A的坐标为(3,4),点B在y轴上.点P为线段AB上的一个动点(点P与A、B不重合),过点P作x轴的垂线与该二次函数的图象交于点E.
(1)求b的值及这个二次函数的关系式;
(2)设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)若点D为直线AB与该二次函数的图象对称轴的交点,则四边形DCEP能否构成平行四边形?如果能,请求出此时P点的坐标;如果不能,请说明理由.
(4)以PE为直径的圆能否与y轴相切?如果能,请求出点P的坐标;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知二次函数y=ax2-4x+c的图象与坐标轴交于点A(-1,0)和点C(0,-5).
(1)求该二次函数的解析式和它与x轴的另一个交点B的坐标.
(2)在上面所求二次函数的对称轴上存在一点P(2,-2),连接OP,找出x轴上所有点M的坐标,使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衡水一模)如图,已知二次函数y=-
12
x2+bx+c
的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积;
(3)若抛物线的顶点为D,在y轴上是否存在一点P,使得△PAD的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案