精英家教网 > 初中数学 > 题目详情
(2012•六盘水)如图,已知E是?ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.
(1)求证:△ABE≌△FCE.
(2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形.
分析:(1)由ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得到两条线段相等,再由对应角相等,利用ASA可得出三角形ABE与三角形FCE全等;
(2)由△ABE与△FCE全等,根据全等三角形的对应边相等得到AB=CF;再由AB与CF平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形,根据平行四边形的对角线互相平分得到AE=EF,BE=EC;再由∠AEC为三角形ABE的外角,利用外角的性质得到∠AEC等于∠ABE+∠EAB,再由∠AEC=2∠ABC,得到∠ABE=∠EAB,利用等角对等边可得出AE=BE,可得出AF=BC,利用对角线相等的平行四边形为矩形可得出ABFC为矩形.
解答:证明:(1)∵四边形ABCD为平行四边形,
∴AB∥DC,
∴∠ABE=∠ECF,
又∵E为BC的中点,
∴BE=CE,
在△ABE和△FCE中,
∠ABE=∠ECF
BE=CE
∠AEB=∠FEC(对顶角相等)

∴△ABE≌△FCE(ASA);

(2)∵△ABE≌△FCE,
∴AB=CF,
又∵四边形ABCD为平行四边形,
∴AB∥CF,
∴四边形ABFC为平行四边形,
∴BE=EC,AE=EF,
又∵∠AEC=2∠ABC,且∠AEC为△ABE的外角,
∴∠AEC=∠ABC+∠EAB,
∴∠ABC=∠EAB,
∴AE=BE,
∴AE+EF=BE+EC,即AF=BC,
则四边形ABFC为矩形.
点评:此题考查了矩形的判定,平行四边形的性质,三角形的外角性质,等腰三角形的判定与性质,以及全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•六盘水)下列计算正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•六盘水)当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为
25
6
25
6
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•六盘水)数字
2
1
3
,π,
38
,cos45°,
    ••
0.32
中是无理数的个数有(  )个.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•六盘水)如图是教师每天在黑板上书写用的粉笔,它的主视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•六盘水)2012年前4个月,我国城镇保障性安居工程己开工228套,开工率为30%,完成投资2470亿元.投资金额2470亿元用科学记数法表示为
2.47×103
2.47×103
亿元.

查看答案和解析>>

同步练习册答案