精英家教网 > 初中数学 > 题目详情

【题目】用小立方块搭成的几何体.从正面看和从上面看的形状如图所示,问组成这样的几何体最多需要多少个立方块,最少需要多少个立方块?请画出最少和最多时从左面看到的形状.

【答案】最多需要8个小正方体,见解析;最少需要7个正方体,见解析.

【解析】

根据正面看与上面看的图形,得到俯视图中最左的一列都为3层,第2列都为2层,第3列为1层,得到最多共3+2+2+1=8个小正方体,画出从左面看几何体的图形,如图所示;最少需要3+2+1+1=7个小正方体,分别画出从左边看该几何体得到图形即可.

解:最多需要8个小正方体,从左边看几何体得到的图形如图(1)所示;

最少需要7个正方体,从左面看该几何体得到的图形如图(2)或(3)所示,答案不唯一,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥CD,垂足为E,若线段AE=10,则S四边形ABCD=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题满分10分)如图,某大楼的顶部竖有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度AB=10米,AE=15米.(测角器的高度忽略不计,结果精确到0.1米.参考数据:

1)求点B距水平面AE的高度BH

2)求广告牌CD的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.(结果精确到0.1米)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校组织初二年级400名学生到威海参加拓展训练活动,已知用3辆小客车和1辆大客车每次可运送学生105人,用1辆小客车和2辆大客车每次可运送学生110人.

(1)每辆小客车和每辆大客车各能坐多少名学生?

(2)若计划租小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满:

①请你设计出所有的租车方案;

②若小客车每辆租金250元,大客车每辆租金350元,请选出最省线的租车方案,并求出最少租金.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小红家有一个小口瓶(如图所示),她很想知道它的内径是多少?但是尺子不能伸在里边直接测,于是她想了想,唉!有办法了.她拿来了两根长度相同的细木条,并且把两根长木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,你知道这是为什么吗?请说明理由.(木条的厚度不计)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以点O为圆心,OB为半径作圆,过点C作CD∥AB交⊙O于点D,连接BD.

(1)猜想AC与⊙O的位置关系,并证明你的猜想;

(2)试判断四边形BOCD的形状,并证明你的判断;

(3)已知AC=6,求扇形OBC所围成的圆锥的底面圆的半径r.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为满足市场需求,某超市在五月初五端午节来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.

1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;

2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?

3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】温州市在今年三月份启动实施明眸皓齿工程.根据安排,某校对于学生使用电子产品的一周用时情况进行抽样调查,绘制成以下频数分布直方图.请根据图中提供的信息,解答下列问题.

(1)这次共抽取了 名学生进行调查.

(2)用时在2.45~3.45小时这组的频数是_ 频率是_ .

(3)如果该校有1000名学生,请估计一周电子产品用时在0.45~3.45小时的学生人数.

查看答案和解析>>

同步练习册答案