【题目】如图,在平面直角坐标系中,直线l1=k1x+b与反比例函数的图象交于A,B两点(点A在点B左侧),已知点A的坐标是(6,2)点B的纵坐标是﹣3.
(1)求反比例函数和直线l1的表达式;
(2)根据图象直接写出k1x+b>的解集;
(3)将直线l1:沿y轴向上平移后的直线l2与反比例函数在第一象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.
【答案】(1)y=,y=x﹣1;(2)﹣4<x<0或x>6;(3)y=x+5.
【解析】
(1)将点A(6,2)代入,求出k2=12,得到反比例函数的表达式;将y=3代入,求出x,得到B点坐标,再将A,B两点的坐标代入l1=k1x+b,利用待定系数法求出直线l1的表达式;
(2)找出一次函数落在反比例函数图象上方的部分对应的自变量x的取值范围即可;
(3)设直线l1与x轴交于点E,平移后的直线l2与x轴交于点D,连接AD,BD,依据CD∥AB,即可得出△ABC的面积与△ABD的面积相等,求得D(10,0),即可得出平移后的直线l2的函数表达式.
(1)∵反比例函数的图象过点A(6,2),
∴k2=6×2=12,
∴反比例函数的表达式为y=,
∵反比例函数y=的图象过点B,B的纵坐标是﹣3,
∴y=﹣3时,x=﹣4,
∴B(﹣4,﹣3).
∵直线l1=k1x+b过A,B两点,
∴,解得,
∴直线l1的表达式为y=x﹣1;
(2)根据图象,可知当﹣4<x<0或x>6时,一次函数的图象在反比例函数图象的上方,
所以k1x+b>的解集为﹣4<x<0或x>6;
(3)如图,设直线l1与x轴交于点E,平移后的直线l2与x轴交于点D,连接AD,BD,
∵CD∥AB,
∴△ABC的面积与△ABD的面积相等,
∵△ABC的面积为30,
∴S△ADE+S△BDE=30,即DE(|yA|+|yB|)=30,
∴×DE×5=30,
∴OD=12,
∵E(
∴D(﹣10,0),
设平移后的直线l2的函数表达式为y=x+n,
把D(﹣10,0)代入,可得0=×(﹣10)+n,
解得n=5,
∴平移后的直线l2的函数表达式为y=x+5.
科目:初中数学 来源: 题型:
【题目】如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22时,
教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).
(1)求教学楼AB的高度;
(2)学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).
(参考数据:sin22≈,cos22≈,tan22≈)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:
(1)八年级(3)班学生总人数是 ,并将条形统计图补充完整;
(2)刘老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是圆上一点,点D是的中点,延长AD至点E,使得AB=BE.
(1)求证:△ACF∽△EBF;
(2)若BE=10,tanE=,求CF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知梯形中,∥,且,,。
⑴如图,P为上的一点,满足∠BPC=∠A,求AP的长;
⑵如果点P在边上移动(点P与点不重合),且满足∠BPE=∠A,交直线于点E,同时交直线DC于点。
①当点在线段DC的延长线上时,设,CQ=y,求关于的函数关系式,并写出自变量的取值范围;
②写CE=1时,写出AP的长(不必写解答过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一笔直的海岸线上有A,B两个观测站,A在B的正东方向,有一艘小船停在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向,BP=6km.
(1)求A、B两观测站之间的距离;
(2)小船从点P处沿射线AP的方向前行,求观测站B与小船的最短距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于55元,设每件商品的售价上涨x元(x为整数),每周的销售利润为y元.
(1)求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?
(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com