【题目】4月23日为世界阅读日,为响应党中央“倡导全民阅读,建设书香社会”的号召,某校团委组织了一次全校学生参加的“读书活动”大赛,为了了解本次大赛的成绩,校团委随机抽取了部分学生的成绩(成绩取整数,总分100分)作为样本进行统计,绘制了如下不完整的频数频率分布表和频数分布直方图:
根据所给信息,解答下列问题
(1)抽取的样本容量是 . . .
(2)补全频数分布直方图,这200名学生成绩的中位数会落在 分数段;
(3)全校有1200名学生参加比赛,若得分为90分及以上为优秀,请你估计全校参加比赛成绩优秀的学生人数
【答案】(1)200,70,0.2;(2)见解析,70-80;(3)300人.
【解析】
(1)根据50≤x<60这一组的频数和频率,可以得到抽取样本的样本容量,然后即可得到m和n的值;
(2)根据(1)中m的值,可以将频数分布直方图补充完整,然后根据频数分布表中的数据,可以得到这200名学生成绩的中位数会落在哪一组;
(3)根据频数分布表中的数据,可以计算出全校参加比赛成绩优秀的学生人数.
解:(1)抽取的样本容量是:10÷0.05=200,
m=200×0.35=70,
n=40÷200=0.2,
故答案为:200,70,0.2;
(2)由(1)知,m=70,
补全的频数分布直方图如图所示,
这200名学生成绩的中位数会落在80≤x<90分数段,
故答案为:80≤x<90;
(3)1200×0.25=300(人),
答:全校参加比赛成绩优秀的学生有300人.
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图像与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
(1)求线段BC的长;
(2)当0≤y≤3时,请直接写出x的范围;
(3)点P是抛物线上位于第一象限的一个动点,连接CP,当∠BCP=90o时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:两个相似等腰三角形,如果它们的底角有一个公共的顶点,那么把这两个三角形称为“关联等腰三角形”.如图,在与中, ,且所以称与为“关联等腰三角形”,设它们的顶角为,连接,则称会为“关联比".
下面是小颖探究“关联比”与α之间的关系的思维过程,请阅读后,解答下列问题:
[特例感知]
当与为“关联等腰三角形”,且时,
①在图1中,若点落在上,则“关联比”=
②在图2中,探究与的关系,并求出“关联比”的值.
[类比探究]
如图3,
①当与为“关联等腰三角形”,且时,“关联比”=
②猜想:当与为“关联等腰三角形”,且时,“关联比”= (直接写出结果,用含的式子表示)
[迁移运用]
如图4, 与为“关联等腰三角形”.若点为边上一点,且,点为上一动点,求点自点运动至点时,点所经过的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在中,点从点出发以的速度沿折线运动,点从点出发以的速度沿运动,两点同时出发,当某一点运动到点时,两点同时停止运动设运动时间为的面积为关于的函数图像由两段组成,如图2所示.
(1)求的值;
(2)求图2中图像段的函数表达式;
(3)当点运动到线段上某一段时,的面积大于当点在线段上任意一点时的面积,求的取值范围.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小超骑电动车、小生骑自行车分别同时从甲、乙两地出发,匀速相向而行,在分钟时两人相遇,在行驶的过程中,小超到达乙地后停留一会,再按原路原速返回甲地,小生一直匀速骑自行车后,与小超同时到达甲地,如图表示两人距乙地的距离与时间之间的函数关系.
(1)小超骑车的速度_ ,小生骑车的速度 ;
(2)求线段的解析式;
(3)如果小超不在乙地停留,按原路原速直接返回,问在小超回到甲地之前,小超何时能追上小生?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“普洱茶”是云南有名的特产,某网店专门销售某种品牌的普洱茶,成本为30元/盒,每天销售(件)与销售单价(元)之间存在一次函数关系,如图所示.
(1)求与之间的函数关系式;
(2)如果规定每天该种普洱茶的销售量不低于240盒,该网店店主热心公益事业,决定从每天的销售利润中捐出500元给扶贫基金会,当销售单价为多少元时,每天获取的净利润最大,最大净利润是多少?(注:净利润=总利润-捐款)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】书法是我国的文化瑰宝,研习书法能培养高雅的品格某校为加强书法教学,了解学生现有的书写能力,随机抽取了部分学生进行测试,测试结果分为优秀、良好、及格、不及格四个等级,分别用,,,表示,并将测试结果绘制成如下两幅不完整的统计图.
书写能力等级测试条形统计图:
书写能力等级测试扇形统计图:
请根据统计图中的信息解答以下问题:
(1)本次抽取的学生共有______人,扇形统计图中所对应扇形的圆心角是_______;
(2)把条形统计图补充完整;
(3)依次将优秀、良好、及格、不及格记为分、分、分、分,则抽取的这部分学生书写成绩的众数是_______,中位数是_______,平均数是________;
(4)若该校共有学生人,请估计一下,书写能力等级达到优秀的学生大约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年2﹣4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.
(1)轻症患者的人数是多少?
(2)该市为治疗危重症患者共花费多少万元?
(3)所有患者的平均治疗费用是多少万元?
(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一把折叠椅子,图2是椅子完全打开支稳后的侧面示意图,表示地面所在的直线,其中和表示两根较粗的钢管,表示座板平面,,交于点,且,长,,,长,长,
(1)求座板的长;
(2)求此时椅子的最大高度(即点到直线的距离).(结果保留根号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com