精英家教网 > 初中数学 > 题目详情
如图(1),矩形ABCD的一边BC在直角坐标系中轴上,折叠边AD,使点D落在轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为,其中>0.

(1)求点E、F的坐标(用含的式子表示);
(2)连接OA,若△OAF是等腰三角形,求的值;
(3)设抛物线经过图(1)中的A、E两点,如图(2),其顶点为M,连结AM,若∠OAM=90°,求的值.
(1)E(m+10,3),F(m+6,0);(2)6或4或;(3),-1,12

试题分析:(1)∵根据矩形的性质可得AD=BC=10,AB=CD=8,∠D=∠DCB=∠ABC=90°,由折叠对称性可得AF=AD=10,FE=DE,在Rt△ABF中,根据勾股定理可求得BF的长,从而可得FC的长,设DE=x,在Rt△ECF中,根据勾股定理即可列方程求得x的值,从而得到CE的长,即得结果;
(2)分三种情形讨论:若AO=AF,若OF=AF,若AO=OF,根据等腰三角形的性质及勾股定理求解;
(3)由(1)知A(m,8),E(m+10,3),再代入抛物线即可求得的值,从而表示出点M的坐标,设对称轴交AD于G,即可表示出点G的坐标,求得AG、GM的长,再证得△AOB∽△AMG,根据相似三角形的性质即可求得结果.
(1)∵四边形ABCD是矩形,

∴AD=BC=10,AB=CD=8,∠D=∠DCB=∠ABC=90°.
由折叠对称性:AF=AD=10,FE=DE.
在Rt△ABF中,BF=.
∴FC="4."
设DE=x,在Rt△ECF中,,解得
∴CE= 
∵B(m,0)
∴E(m+10,3),F(m+6,0);
(2)分三种情形讨论:
若AO=AF,∵AB⊥OF,∴OB=BF=6.∴m=6.
若OF=AF,则m+6=10,解得m=4.  
若AO=OF,在Rt△AOB中,AO2=OB2+AB2=m2+64,
,解得m=.   
综合得m=6或4或
(3)由(1)知A(m,8),E(m+10,3).
由题意得, 解得  
∴M(m+6,﹣1).
设对称轴交AD于G.
∴G(m+6,8),
∴AG=6,GM=
∵∠OAB+∠BAM=90°,∠BAM+∠MAG=90°,
∴∠OAB=∠MAG.
又∵∠ABO=∠MGA=90°,
∴△AOB∽△AMG.  
,即
∴m=12.
点评:二次函数的综合题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,AB在x轴上,AB=10,以AB为直径的⊙与y轴正半轴交于点C,连接BC、AC,CD是⊙的切线,AD⊥CD于点D,tan∠CAD=,抛物线过A、B、C三点.

(1)求证:∠CAD=∠CAB;
(2)求抛物线的解析式;
(3)判断抛物线的顶点E是否在直线CD上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线 经过A(2,0). 设顶点为点P,与x轴的另一交点为点B

(1)求b的值和点PB的坐标;
(2)如图,在直线上是否存在点D,使四边形OPBD为平行四边形?若存在,求出点D的坐标;若不存在,请说明理由;
(3)在轴下方的抛物线上是否存在点M,使△AMP≌△AMB?如果存在,试举例验证你的猜想;如果不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知在△ABC中,∠A = 90°,,经过这个三角形重心的直线DE // BC,分别交边ABAC于点D和点EP是线段DE上的一个动点,过点P分别作PMBCPFABPGAC,垂足分别为点MFG.设BM = x,四边形AFPG的面积为y

(1)求PM的长;
(2)求y关于x的函数解析式,并写出它的定义域;
(3)联结MFMG,当△PMF与△PMG相似时,求BM的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在直角坐标平面上,横坐标与纵坐标都是整数的点称为整点.如果将二次函数
轴所围成的封闭图形染成红色,则在此红色内部区域及其边界上的
整点个数是   

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于点F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是       (填序号).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数yax2bx+c(a≠0)的图象如图,则下列结论中正确的是
A.ac>0            B.当x>1时,yx的增大而增大
C.2ab=1          D.方程ax2bx+c=0有一个根是x=3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,直线交x轴于点B,交y轴于点C,点A为x轴正半轴上一点,AO=CO,△ABC的面积为12.

(1)求b的值;
(2)若点P是线段AB中垂线上的点,是否存在这样的点P,使△PBC成为直角三角形.若存在,试直接写出所有符合条件的点P的坐标;若不存在,试说明理由;
(3)点Q为线段AB上一个动点(点Q与点A、B不重合),QE∥AC,交BC于点E,以QE为边,在点B的异侧作正方形QEFG.设AQ=m,△ABC与正方形QEFG的重叠部分的面积为S,试求S与m之间的函数关系式,并写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是
A.第8秒B.第10秒C.第12秒D.第15秒

查看答案和解析>>

同步练习册答案