精英家教网 > 初中数学 > 题目详情
如图是椒江某公园一圆形喷水池,水流在各方向沿形状相同的抛物线落下。建立如图所示的坐标系,如果喷头所在处A(0,1.25),水流路线最高处B(1,2.25),求该抛物线的解析式.

试题分析:由水流路线最高处B(1,2.25)可设顶点式,再根据图象过点A(0,1.25)即可求得结果.
设抛物线的解析式为
∵图象过点A(0,1.25)
∴1.25=,解得
∴抛物线的解析式为.
点评:二次函数的应用是初中数学的重点,是中考常见题,一般难度不大,需熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某超市经销一种销售成本为每件30元的商品.据市场调查分析,如果按每件40元
销售,一周能售出500件,若销售单价每涨1元,每周的销售量就减少10件.设销售单价为每件x元(x≥40),一周的销售量为y件.
(1)写出y与x的函数关系式(标明x的取值范围);
(2)设一周的销售利润为s元,写出s与x的函数关系式,并确定当单价在什么范围内变化时,
利润随着单价的增大而增大;
(3)在超市对该种商品投入不超过8800元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.

(1)求该抛物线的函数解析式;
(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.
(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若把函数y=x的图象用Exx)记,函数y=2x+1的图象用Ex,2x+1)记,……则Ex)图象上的最低点是__    

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

对于抛物线,下列说法正确的是                 
A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)
C.开口向下,顶点坐标(-5,3)D.开口向上,顶点坐标(-5,3)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象以A(-1,4)为顶点,且过点B(2,0)
(1)求该函数的关系式;
(2)若将该函数图象以顶点为中心旋转,求旋转后抛物线的关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c的图象如图所示,则下列判断中错误的是        (     )
A.图象的对称轴是直线x=1;B.一元二次方程ax2+bx+c=0的两个根是-1、3;
C.当x>1时,y随x的增大而减小;D.当-1<x<3时,y<0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将二次函数化成的形式,则         

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

国内某企业生产一种隔热瓦(其厚度忽略不计),形状近似为正方形,边长x(cm)在5~25之间(包括5和25),每片隔热瓦的成本价(元)与它的面积(cm2)成正比例.出厂价P(元)与它的边长x(cm)满足一次函数,图象如图所示.

(1)已知出厂一张边长为15cm的隔热瓦,获得的利润是55元(利润=出厂价-成本价).
①求每片的隔热瓦利润Q(元)与边长x(cm)之间满足的函数关系式;
②当边长为多少时,出厂的隔热瓦能获得最大利润?最大利润是多少?
(2)在(1)的基础上,如果厂家继续扩大产品规模,从5cm~25cm扩大到5cm~60cm.由于20cm~40cm的隔热瓦属于国家科技项目,国家对这部分产品进行贴补.每片隔热瓦贴补W(元)与它的边长x(cm)满足:.在推广20cm~40cm的隔热瓦时,厂家进行市场营销,这种规格的隔热瓦广告费为每片10元.要使每片隔热瓦的利润不低于60.4元,求5cm~60cm的隔热瓦边长x的取值范围(x取整数).

查看答案和解析>>

同步练习册答案