精英家教网 > 初中数学 > 题目详情
如图所示,有长24米的篱笆,一面利用墙(墙的最大长度为10米),围成中间有一道篱笆的长方形花圃.设花圃的边AB长为x,花圃的面积为s米2
(1)请求出s与x的函数关系式.
(2)按照题中要求,所围的花圃面积能否是48米2?若能,求出的x值;若不能,请说明理由.
(参考公式:二次函数y=ax2+bx+c=0,当x=-
b
2a
时,y最大(小)值=
4ac-b2
4a
(1)根据题意得s=x(24-3x)
∴s=-3x2+24x;

(2)不能;
把s=48代入得-3x2+24x=48
解得x=4
即AB=4
∴AD=24-3x=12
这与墙的最大长度为10米矛盾,不合实际.
∴所围的花圃面积不能是48米2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知:如图所示,一次函数有y=-2x+3的图象与x轴、y轴分别交于A、C两点,二次函数y=x2+bx+c的图象过点C,且与一次函数在第二象限交于另一点B,若AC:CB=1:2,那么这二次函数的顶点坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在Rt△ABC中,∠A=90°,tanB=
3
4
,点P在线段AB上运动,点Q、R分别在线段BC,AC上,且使得四边形APQR是矩形.设AP的长是x,矩形APQR面积为y,已知y是x的函数,其图象是过点(12,36)的抛物线上的一部分.
(1)求AB的长;
(2)当AP为何值时,矩形APQR的面积最大,并求出最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一张矩形纸片OABC放在平面直角坐标系内,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
(1)如图,将纸片沿CE对折,使点B落在x轴上的点D处,求D点的坐标;
(2)在(1)中,设BD与CE的交点为P,如果点B、P在抛物线y=x2+bx+c上,求b、c的值;
(3)如果将矩形纸片沿某直线l对折,使点B落在坐标轴上的点F处,且BF与l的交点Q恰好落在(2)的抛物线上.除了上述的点D外,这样的点F是否存在?如果存在,求出点F的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=x+k图象过点A(1,0),交y轴于点B,C为y轴负半轴上一点,且OB=
1
2
BC,过A,C两点的抛物线交直线AB于点D,且CDx轴.
(1)求这条抛物线的解析式;
(2)直接写出使一次函数值小于二次函数值时x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+1与x轴交于两点A(-1,0),B(1,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)过点B作BDCA抛物线交于点D,求四边形ACBD的面积;
(3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直线y=-x+4分别交x轴、y轴于点A、C,过A、C两点的抛物线y=ax2-2ax+c交x轴于另一点B.
(1)求该抛物线的解析式;
(2)若动点Q从点B出发,以每秒2个单位长度沿线段BA方向运动,同时动直线l从x轴出发,以每秒1个单位长度沿y轴方向平行移动,直线l交AC与D,交BC于E,当点Q运动到点A时,两者都停止运动.设运动时间为t秒,△QED的面积为S.
①求S与t的函数关系式:并探究:当t为何值时,S有最大值为多少?
②在点Q及直线l的运动过程中,是否存在△QED为直角三角形?若存在,请求t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①所示,在直角梯形ABCD中,∠BAD=90°,E是直线AB上一点,过E作直线lBC,交直线CD于点F.将直线l向右平移,设平移距离BE为t(t≥0),直角梯形ABCD被直线l扫过的面积(图中阴影部分)为S,S关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.

信息读取
(1)梯形上底的长AB=______;
(2)直角梯形ABCD的面积=______;
图象理解
(3)写出图②中射线NQ表示的实际意义;
(4)当2<t<4时,求S关于t的函数关系式;
问题解决
(5)当t为何值时,直线l将直角梯形ABCD分成的两部分面积之比为1:3.

查看答案和解析>>

同步练习册答案