【题目】如图,△ABC内接于⊙O,直径DE⊥AB于点F,交BC于点 M,DE的延长线与AC的延长线交于点N,连接AM.
(1)求证:AM=BM;
(2)若AM⊥BM,DE=8,∠N=15°,求BC的长.
【答案】(1)见解析;(2)+
【解析】
(1)由垂径定理可求得AF=BF,可知DE为AB的垂直平分线,可得AM=BM;
(2)连接AO,BO,可求得∠ACB=60°,可求得∠AOF,由DE的长可知AO,在Rt△AOF中得AF,在Rt△AMF中可求得AM,在Rt△ACM中,由,可求得CM,则可求得BC的长.
(1)证明:
∵直径DE⊥AB于点F,
∴AF=BF,
∴AM=BM;
(2)连接AO,BO,如图,
由(1)可得 AM=BM,
∵AM⊥BM,
∴∠MAF=∠MBF=45°,
∴∠CMN=∠BMF=45°,
∵AO=BO,DE⊥AB,
∴∠AOF=∠BOF=,
∵∠N=15°,
∴∠ACM=∠CMN+∠N=60°,即∠ACB=60°,
∵∠ACB=.
∴∠AOF=∠ACB=60°.
∵DE=8,
∴AO=4.
在Rt△AOF中,由,得AF=,
在Rt△AMF中,AM==.得BM= AM=,
在Rt△ACM中,由,得CM=,
∴BC=CM+BM=+.
科目:初中数学 来源: 题型:
【题目】探究:如图①,直线l1∥l2∥l3,点C在l2上,以点C为直角顶点作∠ACB=90°,角的两边分别交l1与l3于点A、B,连结AB,过点C作CD⊥l1于点D,延长DC交l3于点E.
(1)求证:△ACD∽△CBE.
(2)应用:如图②,在图①的基础上,设AB与l2的交点为F,若AC=BC,l1与l2之间的距离为2,l2与l3之间的距离为1,则AF的长度是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在 10×6 的正方形网格中,每个小正方形的边长均为 1,线段 AB 的端点 A、B 均在小正方形的顶点上.
(1)在图中画出以 AB 为一腰的等腰△ABC,点 C 在小正方形顶点上,△ABC 为钝角三角形,且△ABC 的面积为;
(2)在图中画出以 AB 为斜边的直角三角形 ABD, 点 D在小正方形的顶点上,且 AD>BD;
(3)连接 CD,请你直接写出线段 CD 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.
(1)求抛物线C函数表达式;
(2)若点M是位于直线AB上方抛物线上的一动点,当的面积最大时,求此时的面积S及点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A(3,3),点B(4,0),点C(0,﹣1).
(1)以点C为中心,把△ABC逆时针旋转90°,请在图中画出旋转后的图形△A′B′C,点B′的坐标为________;
(2)在(1)的条件下,求出点A经过的路径的长(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的三条边为边,分别向外作正方形,连接EF,GH,DJ,如果△ABC的面积为8,则图中阴影部分的面积为( )
A.28B.24C.20D.16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上一动点,AG,DC的延长线交于点F,连接AC,AD,GC,GD.
(1)求证:∠FGC=∠AGD;
(2)若AD=6.
①当AC⊥DG,CG=2时,求sin∠ADG;
②当四边形ADCG面积最大时,求CF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG.以下结论:①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正确的个数是( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com