精英家教网 > 初中数学 > 题目详情
8.已知直角三角形面积为24,斜边长为10,则其周长为24.

分析 设直角三角形的两直角边分别是a、b(a<b,且a、b均为正数).利用勾股定理和三角形的面积公式求得两直角边是6和8.然后由三角形的周长公式求得该直角三角形的周长.

解答 解:设直角三角形的两直角边分别是a、b(a<b,且a、b均为正数),
则$\left\{\begin{array}{l}{{a}^{2}+{b}^{2}=1{0}^{2}}\\{\frac{1}{2}ab=24}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=6}\\{b=8}\end{array}\right.$.
所以该直角三角形的周长是:6+8+10=24.
故答案为:24.

点评 本题考查了勾股定理的应用.关键是熟悉勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方(如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.先化简$\frac{4}{a+3}$-$\frac{6}{{a}^{2}-9}$÷$\frac{2}{a-3}$,再求代数式的值,其中a=$\sqrt{3}$-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.阅读下面的材料
已知三次方程x3+px2+qx+m=0有整数解t,其中p,q,m为整数.
将t代入方程有:t3+pt2+qt+m=0,移项并整理得:m=t×(-t2-pt-q),由于-t2-pt-q与m及t都是整数,所以m是t的倍数.
根据上面回答下列问题
(1)根据上面的推理过程,说明了系数为整数的三次方程x3+px2+qx+m=0的整数解只可能是m的因数(用文字描述)
(2)方程x3-2x2-4x+3=0是否有整数解?若有,请求出其整数解;若没有,请说明理由.
(3)解关于x的方程x3+4x2+3x-2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图.在?ABCD中,点E、F分别在DC、AB上,DE=BF,直线EF分别与AD、CB的延长线相交于点G、H.求证:AC、GH互相平分.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,已知B,C,E三点在同一条直线上,∠A=∠DCE,∠ACB=∠E,CD=AB.若BC=8,BE=1,则AC的长为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.化简或求值
(1)若|a|=4,|b|=7,若ab>0,$\sqrt{(a-b)^{2}}$=b-a,求a-2b+1的值.
(2)当代数式100-(x-1)2有最大值时,求代数式-3(x-5)-(2x+7)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.请从以下两个小题中任选一个作答,若多选,则按第一题计分.
A.单项式-$\frac{{x}^{3}y}{3}$的系数是-$\frac{1}{3}$,次数是4,多项式-5xy3-6x2y3-3是五 次三项式.
B.水果市场上鸭梨包装箱上印有字样:“15kg±0.2kg”,有一箱鸭梨的质量为14.92kg,则这箱鸭梨符合标准.(选填“符合”或“不符合”)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.若方程ax=5+3x的解为x=5,则a等于(  )
A.80B.4C.16D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.一个三位自然数m.将它任意两个数位上的数字对调后得一个首位不为0的新三位自然数m'(m'可以与m相同),记m'=$\overline{abc}$,在m’所有的可能情况中,当|a+2b-c|最小时,我们称此时的m’是m的“幸福美满数”,并规定K(m)=a2+2b2-c2.例如:318按上述方法可得新数有:381、813、138;因为|3+2×1-8|=3,|3+2×8-1|=18,|8+2×1-3|=7,|1+2×3-8|=1,1<3<7<18.所以138是318的“幸福美满数”.K(318)=12+2×32-82=-45.
(1)若三位自然数t的百位上的数字与十位上的数字都为n(1≤n≤9.n为自然数),个位上的数字为0,求证:K(t)=0;
(2)设三位自然数s=100+10x+y(1≤x≤9,1≤y≤9,x,y为自然数),且x<y,交换其个位与十位上的数字得到新数s',若19s+8s'=3888,那么我们称s为“梦想成真数”,求所有“梦想成真数”中K(s)的最大值.

查看答案和解析>>

同步练习册答案