精英家教网 > 初中数学 > 题目详情
已知:O为坐标原点,∠AOB=30°,∠ABO=90°且A(2,0).求:过A、B、O三点的二次函数解析式.
过B点作BC⊥OA,垂足为C,
在Rt△OAB中,OA=2,∠AOB=30°,
∴OB=
3

在Rt△OBC中,OB=
3
,∠BOC=30°,
∴OC=
3
2
,BC=
3
2

即B(
3
2
3
2
),
∵抛物线过O(0,0),A(2,0),
设抛物线解析式为y=ax(x-2),将B(
3
2
3
2
)代入,得
3
2
3
2
-2)a=
3
2

解得a=-
2
3
3

∴二次函数解析式为y=-
2
3
3
x(x-2)=-
2
3
3
x2+
4
3
3
x.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c(a≠0)与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴的正半轴交于点C.如果x1、x2是方程x2-x-6=0的两个根(x1<x2),且△ABC的面积为
15
2

(1)求此抛物线的解析式;
(2)求直线AC和BC的方程;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作直线y=m(m为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一桥拱呈抛物线状,桥的最大高度是16米,跨度是40米,在线段AB上离中心M处5米的地方,桥的高度是______m(π取3.14).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,用长为32米的篱笆围成一个外形为矩形的花圃,花圃的一边利用原有墙,中间用2道篱笆割成3个小矩形.已知原有墙的最大可利用长度为15米,花圃的面积为S平方米,平行于原有墙的一边BC长为x米.
(1)求S关于x的函数关系式;
(2)当围成的花圃面积为60平方米时,求AB的长;
(3)能否围成面积比60平方米更大的花圃?如果能,那么最大的面积是多少?如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

写出下列函数的关系式:有一个角是60°的直角三角形的面积S与斜边x的之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1所示,已知二次函数y=ax2-6ax+c与x轴分别交于点A(2,0)、B(4,0),与y轴交于点C(0,-8t)(t>0).
(1)求a、c的值及抛物线顶点D的坐标(用含t的代数式表示);
(2)如图1,连接AC,将△OAC沿直线AC翻折,若点O的对应点O′恰好落在该抛物线的对称轴上,求实数t的值;
(3)如图2,在正方形EFGH中,点E、F的坐标分别是(4,-4)、(4,-3),边HG位于边EF的右侧.若点P是边EF或边FG上的任意一点(不与E、F、G重合),请你说明以PA、PB、PC、PD的长度为边长不能构成平行四边形;
(4)将(3)中的正方形EFGH水平移动,若点P是正方形边FG或EH上任意一点,在水平移动过程中,是否存在点P,使以PA、PB、PC、PD的长度为边长构成平行四边形,其中PA、PB为对边.若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(t007•呼伦贝尔)某车间有t0名工人,每人每天可加工甲种零件5个或乙种零件4个,每加工一个甲种零件可获利16元,每加工一个乙种零件可获利t4元.现要求加工甲种零件的人数不少于加工乙种零件人数的t倍,设每天所获利润为y元,那么多少人加工甲种零件时,每天所获利润最大,每天所获最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在一块三角形区域ABC中,∠C=90°,边AC=8,BC=6,现要在△ABC内建造一个矩形水池DEFG,如图的设计方案是使DE在AB上.
(1)求△ABC中AB边上的高h;
(2)设DG=x,当x取何值时,水池DEFG的面积最大?
(3)实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为保护大树,请设计出另外的方案,使三角形区域中欲建的最大矩形水池能避开大树.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?

查看答案和解析>>

同步练习册答案