精英家教网 > 初中数学 > 题目详情
已知一次函数的图象经过点A(1,1),B(-2,7),C(m,-3).
(1)求这个一次函数的解析式;
(2)作出该函数图象;
(3)设该函数图象与y轴交于D点,O是坐标原点,求△DOC的面积.
分析:(1)设这个一次函数的解析式为y=kx+b(k、b是常数,且k≠0).把点A、B的坐标分别代入函数解析式,列出关于系数k、b的方程组,通过解方程组来求它们的值;
(2)利用“两点确定一条直线”作出图象;
(3)根据解析式求得点C、D的坐标,然后由三角形的面积公式求得△DOC的面积.
解答:解:(1)设这个一次函数的解析式为y=kx+b(k、b是常数,且k≠0).
由题意得,
k+b=1
-2k+b=7

解之得
k=-2
b=3

故该一次函数的解析式为y=-2x+3;

(2)由(1)知,一次函数的解析式为y=-2x+3,
则当x=0时,y=3;当y=0时,x=
3
2

所以,其图象如图1所示:

(3)由(2)知,D(0,3).则OD=3.
∵点C在一次函数y=-2x+3上,
∴-3=-2m+3,
解得,m=3,
∴C(3,-3),
∴S△DOC=
1
2
OD•|yC|=
1
2
×3×3=
9
2
,即△DOC的面积是
9
2
点评:本题考查了待定系数法求一次函数解析式,一次函数图象.函数与y轴的交点的横坐标为0.函数与x轴的交点的纵坐标为0.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某通信器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着一次函数关系y=
1
20k
x+b
,其中整数k使式子
k+1
+
1-k
有意义.经测算,销售单价60元时,年销售量为50000件.
(1)求出这个函数关系式;
(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额-年销售产品总进价-年总开支).当销售单价x为何值时,年获利最大并求这个最大值;
(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一个正比例函数和一个一次函数,它们的图象都经过点P(-3,3),且一次函数的图象经与y轴相交于点Q(0,-2),求这两个函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知一个正比例函数和一个一次函数,它们的图象都经过点P(-3,3),且一次函数的图象经与y轴相交于点Q(0,-2),求这两个函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读,然后解决问题:

已知:一次函数和反比例函数,求这两个函数图象在同一坐标系内的交点坐标。

解:解方程-x+2=

   去分母,得

-x2+2x=-8

整理得

x2-2x-8=0

解这个方程得:x1=-2  x2=4

经检验,x1=-2 x2=4是原方程的根

当x1=-2,y1=4;x2=4,y2=-2

∴交点坐标为(-2,4)和(4,-2)

问题:

1.在同一直角坐标系内,求反比例函数y=的图象与一次函数y=x+3的图象的交点坐标;

2.判断一次函数y=2x-3的图象与反比例函数y=-的图象在同一直角坐标系内有无交点,说明理由.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省九年级上学期期中数学卷 题型:解答题

先阅读,然后解决问题:

已知:一次函数和反比例函数,求这两个函数图象在同一坐标系内的交点坐标。

解:解方程-x+2=

   去分母,得

-x2+2x=-8

整理得

x2-2x-8=0

解这个方程得:x1=-2  x2=4

经检验,x1=-2 x2=4是原方程的根

当x1=-2,y1=4;x2=4,y2=-2

∴交点坐标为(-2,4)和(4,-2)

问题:

1.在同一直角坐标系内,求反比例函数y=的图象与一次函数y=x+3的图象的交点坐标;

2.判断一次函数y=2x-3的图象与反比例函数y=-的图象在同一直角坐标系内有无交点,说明理由.

 

查看答案和解析>>

同步练习册答案