精英家教网 > 初中数学 > 题目详情
17、如图,在矩形ABCD中,EF∥AB,GH∥BC,EF、GH的交点P在BD上,图中面积相等的四边形有(  )
分析:本题考查了矩形的性质,得出△EPD≌△HDP,则S△EPD=S△HDP,通过对各图形的拼凑,得到的结论.
解答:解:在矩形ABCD中,
∵EF∥AB,AB∥DC,
∴EF∥DC,则EP∥DH;故∠PED=∠DHP;
同理∠DPH=∠PDE;又PD=DP;所以△EPD≌△HDP;则S△EPD=S△HDP
同理,S△GBP=S△FPB
则(1)S梯形BPHC=S△BDC-S△HDP=S△ABD-S△EDP=S梯形ABPE
(2)S□AGPE=S梯形ABPE-S△GBP=S梯形BPHC-S△FPB=S□FPHC
(3)S梯形FPDC=S□FPHC+S△HDP=S□AGPE+S△EDP=S梯形GPDA
(4)S□AGHD=S□AGPE+S□HDPE=S□PFCH+S□PHDE=S□EFCD
(5)S□ABFE=S□AGPE+S□GBFP=S□PFCH+S□GBFP=S□GBCH
故选C.
点评:本题是一道结论开放题,掌握矩形的性质,很容易得到答案.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案