【题目】 如图,是矩形的边上的一点,AC是其对角线,连接AE,过点E作交于点, 交DC于点F,过点B作于点G,交AE于点H.
(1)求证:∽;
(2)求证:;
(3)若E是BC的中点,,,求的长.
【答案】(1)见解析;(2)见解析;(3).
【解析】
(1)先利用等角的余角相等证明∠BAE=∠CEF,进一步即可证得结论;
(2)先利用等角的余角相等证明∠ABG=∠ACB,进而可证明△ABH∽△ECM,再利用相似三角形的性质即可证得结论;
(3)由(1)利用相似三角形的性质可求出CF的长,进而利用勾股定理可求出EF的长,延长FE交AB的延长线于点N,易证△NBE≌△FCE,于是NB=FC,NE=FE,由CF∥AN可得△CMF∽△AMN,然后利用相似三角形的性质可求出FM的长,进一步即可求出结果.
解:(1)证明:∵四边形ABCD是矩形,
∴∠ABC=∠BCD=90°,
∴∠BAE+∠AEB=90°,
∵,∴∠AEB+∠CEF=90°,
∴∠BAE=∠CEF,
∴∽;
(2)证明:∵,∴∠BAG+∠ABG=90°,
又∵∠BAC+∠ACB=90°,∴∠ABG=∠ACB,
∵∠BAH=∠ECM,
∴△ABH∽△ECM,
∴,
即;
(3)∵,,∴BC=8,∵E是BC的中点,∴BE=CE=4,
由(1)知∽,则,即,解得:,
则在Rt△CEF中,,
延长FE交AB的延长线于点N,
∵∠NBE=∠FCE=90°,BE=CE,∠NEB=∠FEC,
∴△NBE≌△FCE,∴NB=FC,NE=FE,
∵CF∥AN,∴△CMF∽△AMN,∴,
∴,
∴.
科目:初中数学 来源: 题型:
【题目】如图是一张长12dm,宽6dm的长方形纸板,将纸板四个角各剪去一个同样的边长为xdm的正方形,然后将四周突出部分折起,可制成一个无盖长方体纸盒.
(1)无盖方盒盒底的长为 dm,宽为 dm(用含x的式子表示).
(2)若要制作一个底面积是40dm2的一个无盖长方体纸盒,求剪去的正方形边长x.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.
(1)当t=2时,点D的坐标是 ;
(2)请用含t的代数式表示出点D的坐标 ;
(3)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值.若不能,请说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的顶点C,D分别在反比例函数y=(x>0).y=(x>0)的图象上,顶点A,B在x轴上,连接OC,交DA于点E,则=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?请完成下列问题:
(1)未降价之前,某商场衬衫的总盈利为 元.
(2)降价后,设某商场每件衬衫应降价x元,则每件衬衫盈利 元,平均每天可售出 件(用含x的代数式进行表示)
(3)请列出方程,求出x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的与的部分对应值如表:
0 | 2 | 3 | 4 | ||
5 | 0 | 0 |
下列结论:①抛物线的开口向上;②抛物线的对称轴为直线;③当时,;④3是方程的一个根;⑤若,是抛物线上两点,则,其中正确的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于点C(O,4),与轴交于点A和点B,其中点A的坐标为(-2,0),抛物线的对称轴与抛物线交于点D,与直线BC交于点E.
(1)求抛物线的解析式;
(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;
(3)平行于DE的一条动直线Z与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在圆上,连接AE,AE与BD相交于点F.
(1)求证:AE=AB;
(2)若E为弧BD的中点,试说明:DE2=EF·AE;
(3)在(2)的条件下,若cos∠ADB=,BE=2,求AF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com