精英家教网 > 初中数学 > 题目详情

【题目】如图,下列关系错误的是(  )

A. AOC=∠AOB+∠BOC

B. AOC=∠AOD-∠COD

C. AOC=∠AOB+∠BOD-∠BOC

D. AOC=∠AOD-∠BOD+∠BOC

【答案】C

【解析】

仔细观察图形,很容易得出∠AOC=AOB+BOC,AOC=AOD-COD;接下来再根据∠BOC=BOD-COD,COD=BOD-BOC即可得出答案.

A、AOC=AOB+BOC,正确,故A选项不符合题意;

B、AOC=AOD-COD,正确,故B选项不符合题意;

C、AOD=AOB+BOD,错误,故C选项符合题意;

D、AOC=AOD-BDO+BOC,正确,故D选项不符合题意.

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0,其中正确的是(填编号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为tt>0秒.

1写出数轴上点B表示的数 ,点P表示的数 用含t的代数式表示

2动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?

3若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC.

(1)作出△ABC关于x轴对称的△A1B1C1 , (只画出图形).
(2)作出△ABC关于原点O成中心对称的△A2B2C2 , (只画出图形),写出B2和C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系(如图1),y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.

(1)求抛物线的解析式;
(2)现有一辆货运卡车,高4.4m,宽2.4m,它能通过该隧道吗?
(3)如果该隧道内设双向道(如图2),为了安全起见,在隧道正中间设有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系(如图1),y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.

(1)求抛物线的解析式;
(2)现有一辆货运卡车,高4.4m,宽2.4m,它能通过该隧道吗?
(3)如果该隧道内设双向道(如图2),为了安全起见,在隧道正中间设有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题中,是真命题的是(
A.对角线互相垂直的平行四边形是正方形
B.相似三角形的周长之比等于相似的平方
C.若(1,y1)、(2,y2)是双曲线y=﹣ 上的两点,则y1<y2
D.方程x2﹣2x+3=0有两个不相等的实数根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2015年深圳国际马拉松赛于12月7日拉开帷幕,某马拉松爱好者用无人机拍摄比赛过程.如图,在无人机的镜头C下,观测深南大道A处的俯角为30°,B处的俯角为45°.如果此时无人机镜头C处离路面的高度CD为100米,点A、D、B在同一直线上,求A、B两处之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=1与抛物线y=x2﹣2x相交于M,N两点,则M,N两点的横坐标是下列哪个方程的解?(

A.x2﹣2x+1=0
B.x2﹣2x﹣1=0
C.x2﹣2x﹣2=0
D.x2﹣2x+2=0

查看答案和解析>>

同步练习册答案