精英家教网 > 初中数学 > 题目详情
18.如图,在矩形ABCD中,AB=4,BC=8,将矩形沿AC折叠,点D落在点F处,AF与BC交于点E.
(1)判断△AEC的形状,并说明理由;
(2)求△AEC的面积.

分析 (1)根据折叠的性质可得∠DAC=∠FAC,根据两直线平行,内错角相等可得∠DAC=∠ACB,从而得到∠FAC=∠ACB,再根据等角对等边可得AE=EC;
(2)设EC=x,表示出AE、BE,然后在Rt△ABE中利用勾股定理列方程求出x,再根据三角形的面积公式列式计算即可得解.

解答 解:(1)△AEC是等腰三角形.
理由如下:∵矩形沿AC折叠,点D落在点F处,AF与BC交于点E,
∴∠DAC=∠FAC,
∵矩形ABCD对边AD∥BC,
∴∠DAC=∠ACB,
∴∠FAC=∠ACB,
∴AE=EC,
故,△AEC是等腰三角形;

(2)设EC=x,则AE=x,BE=BC-EC=8-x,
在Rt△ABE中,根据勾股定理得,AE2=AB2+BE2
即x2=42+(8-x)2
解得x=5,
所以,△AEC的面积=$\frac{1}{2}$×5×4=10.

点评 本题考查了翻折变换的性质,矩形的性质,勾股定理,翻折前后对应边相等,对应角相等,此类题目,利用勾股定理列出方程是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.(1)如图,在四边形ABCD中,∠A=104°-∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥CD于F.
求证:∠1=∠2.
请你完成下面证明过程.
证明:因为∠A=104°-∠2,∠ABC=76°+∠2,
所以:∠A+∠ABC=104°-∠2+76°+∠2,即∠A+∠ABC=180°
所以AD∥BC,(同旁内角互补,两直线平行)
所以∠1=∠DBC,(两直线平行,内错角相等)
因为BD⊥DC,EF⊥DC,
所以∠BDC=90°,∠EFC=90°,(垂线的定义)
所以∠BDC=∠EFC,
所以BD∥EF,(同位角相等,两直线平行)
所以∠2=∠DBC,(两直线平行,同位角相等)
所以∠1=∠2(等量代换).
(2)如图,已知∠ABC=180°-∠A,BD⊥CD于D,EF⊥CD于F,①求证:AD∥BC.
②若∠1=36°,求∠2的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B的坐标为(3,4),一次函数y=-$\frac{2}{3}$x+b的图象与边OC、AB分别交于点D、E,并且满足OD=BE,点M是线段DE上的一个动点.
(1)求b的值;
(2)连结OM,若△ODM的面积与四边形OAEM的面积之比为1:3,求点M的坐标;
(3)设点N是x轴上方平面内的一点,当四边形OMDN为菱形时,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.一辆车和一辆货车分别从甲,乙两地相向而行,图中的l1,l2分别表示轿车和货车离甲地的路程s(千米)与行驶时间t(小时)间的关系.
(1)观察图象,甲,乙两地相距多少千米?轿车在途中停留了多长时间?
(2)通过计算,求货车速度和图象AB对应的轿车速度;
(3)求货车出发多长时间与轿车相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,直线l1的表达式为y=-3x+3,且与x轴交于点D,直线l2经过点A(4,0),B(3,-$\frac{3}{2}$),直线l1,l2交于点C.
(1)求直线l2的表达式;
(2)在直线l2上存在点P,能使S△ADP=2S△ACD,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是x<3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:$\sqrt{12}$-$\sqrt{6}÷\sqrt{2}$+(1-$\sqrt{3}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某单位计划在室内安装空气净化装置,需购进A、B两种设备.每台B种设备价格比每台A种设备价格多0.7万元,花3万元购买A种设备和花7.2万元购买B种设备的数量相同.
(1)求A种、B种设备每台各多少万元?
(2)根据单位实际情况,需购进A、B两种设备共20台,总费用不高于15万元,求A种设备至少要购买多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.用公式法解方程3x2+4=12x,下列代入公式正确的是(  )
A.x=$\frac{12±\sqrt{1{2}^{2}-3×4}}{2}$B.x=$\frac{-12±\sqrt{1{2}^{2}-3×4}}{2}$
C.x=$\frac{12±\sqrt{1{2}^{2}+3×4}}{2}$D.x=$\frac{-(-12)±\sqrt{(-12)^{2}-4×3×4}}{2×3}$

查看答案和解析>>

同步练习册答案