分析 (1)根据折叠的性质得到∠EFC′=∠1,由平行线的性质得到∠1=∠FBC′,等量代换得到∠EFC′=′FEC′,根据等腰三角形的判定定理即可得到结论;
(2)根据折叠的性质和已知条件得到∠EC′F=180°-∠FEC′-∠EFC′=180°-65°=65°=50°,由于∠D′C′F=∠2+∠EC′F=∠C=90°即可得到结论.
解答 (1)证明:四边形EFC′D′是将长方形ABCD中的四边形CDEF沿EF所在直线折叠得到的,
∴∠EFC′=∠1,
∵AD∥BC,
∴∠1=∠FBC′,
∴∠EFC′=′FEC′,
∴FC′=EC′,
∴△EFC′是等腰三角形;
(2)解:∵∠1=∠FEC′=∠EFC′,∠1=65°,
∴∠EC′F=180°-∠FEC′-∠EFC′=180°-65°=65°=50°,
∵∠D′C′F=∠2+∠EC′F=∠C=90°,
∴∠2=90°-∠EC′F=40°,
∴∠2=50°.
点评 本题考查了翻折变换-折叠问题,矩形的性质,平行线的性质,等腰三角形的判定,熟练掌握折叠的性质是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3x+1=5x+7 | B. | $\frac{1}{{x}^{2}}$+x-1=0 | ||
C. | x2-5=0 | D. | ax2-bx=5(a和b为常数) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -2a | B. | 2b | C. | -2b | D. | 2a |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com