分析 (1)由四边形ABCD是平行四边形,得到AD∥BC,从而得到∠AFB=∠FBE,再由∠ABF=∠FBE,推出∠ABF=∠AFB,于是得到AB=AF,同理得出AB=BE,于是得出结论;
(2)由菱形的性质得出AE⊥BF,得到∠ABF=30°,∠BAP=∠FAP=60°从而得出AP=2,又有PM⊥AD,得到PM=$\sqrt{3}$,AM=1,从而得到,DM=5,于是推出结论.
解答 证明:(1)∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AFB=∠FBE,
∵∠ABF=∠FBE,
∴∠ABF=∠AFB,
∴AB=AF,
同理AB=BE,
∴四边形ABEF是菱形;
(2)∵四边形ABEF是菱形,
∴AE⊥BF,
∵∠ABC=60°,
∴∠ABF=30°,∠BAP=∠FAP=60°,
∵AB=4,
∴AP=2,
∵PM⊥AD,
∴PM=$\sqrt{3}$,AM=1,
∵AD=6,
∴DM=5,
∴$\frac{PM}{DM}=\frac{\sqrt{3}}{5}$.
点评 本题主要考查了平行四边形的性质,平行线的性质和菱形的判定,特殊三角形的性质,通过等量代换推出角相等推出等腰三角形是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com