精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=ax2+2x+c经过点A(0,3)、B(﹣1,0),请解答下列问题:

(1)求抛物线的解析式;
(2)抛物线的顶点为D,与x轴的另一交点为C,对称轴交x轴于点E,连接BD,求cos∠DBE;
(3)在直线BD上是否存在点F,使由B、C、F三点构成的三角形与△BDE相似?若存在,求出点F的坐标;若不存在,请说明理由.

【答案】
(1)

解:将A(0,3)、B(﹣1,0)代入y=ax2+2x+c可得:

c=3,a=﹣1,

抛物线的解析式为y=﹣x2+2x+3


(2)

解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,

∴D(1,4),

∴BE=2,DE=4,

∴BD= =2

∴cos∠DBE= =


(3)

解:∵B(﹣1,0),D(1,4),

∴直线BD的解析式为y=2x+2,

∵y=﹣x2+2x+3=﹣(x﹣3)(x+1),

∴C(3,0),

∴BC=4,

①若△BED∽△BFC,如图1,

则∠BED=∠BFC=90°,

作FG⊥BC于G,

∵cos∠CBF=

∴BF=

∴BG= =

∴OG= ,GF=

∴F(﹣ );

②若△BED∽△BCF,如图2,

则∠BCF=90°,

∴F点横坐标为3,

将3代入BD解析式得:y=8,

∴F(3,8);

综上所述,满足要求的F点的坐标为:(﹣ )、(3,8)


【解析】(1)将A、B两点坐标代入即可求得解析式;(2)先求出D点坐标,从而求出BE、DE、BD长度,cos∠DBE则可直接算出;(3)由于B是公共点,不可能是直角顶点,所以就只剩下两种情,即让C和F分别为直角顶点,根据相似性质,列出比例等式计算即可.
【考点精析】利用二次函数的图象和二次函数的性质对题目进行判断即可得到答案,需要熟知二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1,E、F、G、H分别是AB、BC、CD、DA边上的动点(不含端点),且EG、FH均过正方形的中心O.

(1)填空:OHOF (“>”、“<”、“=”);
(2)当四边形EFGH为矩形时,请问线段AE与AH应满足什么数量关系;
(3)当四边形EFGH为正方形时,AO与EH交于点P,求OP2+PHPE的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A、B在坐标轴上,其中A(0,a)、B(b,0)满足:|2a﹣b﹣1|+=0.

(1)求A、B两点的坐标;

(2)将线段AB平移到CD,点A的对应点为C(﹣2,t),如图1所示.若三角形ABC的面积为9,求点D的坐标;

(3)平移线段ABCD,若点C、D也在坐标轴上,如图2所示,P为线段AB上的一动点(不与A、B重合),连接OP,PE平分∠OPB,BCE=2ECD.求证:∠BCD=3(CEP﹣OPE).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根

据调查结果绘制的两幅不完整的统计图.

请你根据统计图提供的信息,解答下列问题:

(1)本次调查中,一共调查了   名同学;

(2)条形统计图中,m=   ,n=   

(3)扇形统计图中,艺术类读物所在扇形的圆心角是   度;

(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(11),第2次接着运动到点(20),第3次接着运动到点(32),,按这样的运动规律,经过第2017次运动后,动点P的坐标是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,平面直角坐标系内,点A(a,0),B(b,2),C(0,2),且a、b是方程组的解,求:

(1)a、b的值.

(2)过点E(6,0)作PE∥y轴,点Q(6,m)是直线PE上一动点,连QA、QB,试用含有m的式子表示△ABQ的面积.

(3)在(2)的条件下.当△ABQ的面积是梯形OABC面积一半时,求Q点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.

(1)2014年这种礼盒的进价是多少元/盒?

(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班10名学生的校服尺寸与对应人数如表所示:

尺寸(cm)

160

165

170

175

180

学生人数(人)

1

3

2

2

2

则这10名学生校服尺寸的众数和中位数分别为( )
A.165cm,165cm
B.165cm,170cm
C.170cm,165cm
D.170cm,170cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下表中有两种移动电话计费方式.

月使用费

主叫限定时间

主叫超时费

被叫

方式一

49

100

免费

方式二

69

150

免费

设一个月内主叫通话为t分钟是正整数

时,按方式一计费为______元;按方式二计费为______元;

时,是否存在某一时间t,使两种计费方式相等,若存在,请求出对应t的值,若不存在,请说明理由;

时,请直接写出省钱的计费方式?

查看答案和解析>>

同步练习册答案