精英家教网 > 初中数学 > 题目详情
5.如图,在等腰△ABC中,AB=AC,BD为∠ABC平分线,延长BC到点E,使CE=CD,作DH⊥BE于H,求证:H为BE的中点.

分析 利用AB=AC得出∠ABC=∠4,再由∠1=∠2,∠3=∠E,得出∠2=∠E,证得△DBE为等腰三角形解决问题.

解答 证明:∵AB=AC,
∴∠ABC=∠4,
∵BD平分∠ABC,
∴∠1=∠2,
∵CE=CD,
∴∠3=∠E,
∴∠2=∠E,
∴△BDE为等腰三角形,BD=ED,
∵DH垂直于BE,
∴H为BE中点(三线合一).

点评 此题考查等腰三角形的判定与性质,角平分线的性质等知识点,熟练掌握等腰三角形的性质和性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图,若BD、CD平分∠EBC、∠BCF,交点为D,求证:∠D=90°-$\frac{1}{2}$∠A.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,∠1=100°,∠A=60°,则∠B的大小是(  )
A.10°B.20°C.40°D.80°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列事件属于必然事件的是(  )
A.打开电视,正在播放新闻
B.实验中学的学生将会有人成为航天员
C.实数a<0,则2a<0
D.任意买一张电影票,座号是偶数

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.已知$\sqrt{3}$=1.732,则$\sqrt{0.03}$=0.1732,$\sqrt{30000}$=173.2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,D是△ABC的边AB上一点,已知AC2=AD•AB,求证:∠ACD=∠ABC.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.在我市某校的科技活动周中,八年级的7个科技小组交来的科技作品件数分别为:6,5,8,10,8,10,8  这组数据的众数和中位数分别是(  )
A.10、6B.10、8C.8、8D.8、6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知:$\frac{2cos60°}{5-2a}$=$\frac{1}{a-1}$,求代数式(1+$\frac{1}{a+1}$)÷$\frac{{a}^{2}+4a+4}{{a}^{2}-1}$的值(先化简,再求值)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列各数中没有平方根的数是(  )
A.-42B.(-4)2C.(-1)2D.$\sqrt{(-2)^{2}}$

查看答案和解析>>

同步练习册答案