精英家教网 > 初中数学 > 题目详情
如图,抛物线y1=x2-1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.
(1)请直接写出抛物线y2的解析式;
(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;
(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由.
(1)抛物线y1=x2-1向右平移4个单位的顶点坐标为(4,-1),
所以,抛物线y2的解析式为y2=(x-4)2-1;

(2)x=0时,y=-1,
y=0时,x2-1=0,解得x1=1,x2=-1,
所以,点A(1,0),B(0,-1),
∴∠OBA=45°,
联立
y=x2-1
y=(x-4)2-1

解得
x=2
y=3

∴点C的坐标为(2,3),
∵∠CPA=∠OBA,
∴点P在点A的左边时,坐标为(-1,0),
在点A的右边时,坐标为(5,0),
所以,点P的坐标为(-1,0)或(5,0);

(3)存在.
∵点C(2,3),
∴直线OC的解析式为y=
3
2
x,
设与OC平行的直线y=
3
2
x+b,
联立
y=
3
2
x+b
y=(x-4)2-1

消掉y得,2x2-19x+30-2b=0,
当△=0,方程有两个相等的实数根时,△QOC中OC边上的高h有最大值,
此时x1=x2=
1
2
×(-
-19
2
)=
19
4

此时y=(
19
4
-4)2-1=-
7
16

∴存在第四象限的点Q(
19
4
,-
7
16
),使得△QOC中OC边上的高h有最大值,
此时△=192-4×2×(30-2b)=0,
解得b=-
121
16

∴过点Q与OC平行的直线解析式为y=
3
2
x-
121
16

令y=0,则
3
2
x-
121
16
=0,解得x=
121
24

设直线与x轴的交点为E,则E(
121
24
,0),
过点C作CD⊥x轴于D,根据勾股定理,OC=
22+32
=
13

则sin∠COD=
h
EO
=
3
13

解得h最大=
3
13
×
121
24
=
121
13
104
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-x2+mx+n经过点A(1,0),B(O,-6).
(1)求抛物线的解析式;
(2)抛物线与x轴交于另一点D,求△ABD的面积;
(3)当y<0,直接写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①是抛物线形拱桥,当水面在n时,拱顶离水面2米,水面宽4米.
(1)求出拱桥的抛物线解析式;
(2)若水面下降2.5米,则水面宽度将增加多少米?(图②是备用图)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD的长、宽分别为3和2,OB=2,点E的坐标为(3,4)连接AE、ED.
(1)求经过A、E、D三点的抛物线的解析式.
(2)以原点为位似中心,将五边形ABCDE放大.
①若放大后的五边形的边长是原五边形对应边长的2倍,请在网格中画出放大后的五边形A2B2C2D2E2,并直接写出经过A2、D2、E2三点的抛物线的解析式:______;
②若放大后的五边形的边长是原五边形对应边长的k倍,请你直接写出经过Ak、Dk、Ek三点的抛物线的解析式:______(用含k的字母表示).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx-4k(k≠0)的图象过点P交x轴于点Q.
(1)求该二次函数的解析式;
(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;
(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.
①连接AN,当△AMN的面积最大时,求t的值;
②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=nx2+4nx+m与x轴交于A(-1,0),B(x2,0)两点,与y轴正半轴交于C,抛物线的顶点为D,且S△ABD=1,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司准备投资开发A、B两种新产品,通过市场调研发现:
(1)若单独投资A种产品,则所获利润yA(万元)与投资金额x(万元)之间满足正比例函数关系:yA=kx;
(2)若单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间满足二次函数关系:yB=ax2+bx.
(3)根据公司信息部的报告,yA,yB(万元)与投资金额x(万元)的部分对应值如下表所示:
x15
yA0.84
yB3.815
(1)填空:yA=______;yB=______;
(2)若公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为W(万元),试写出W与某种产品的投资金额x(万元)之间的函数关系式;
(3)请你设计一个在(2)中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在锐角△ABC中,BC=9,AH⊥BC于点H,且AH=6,点D为AB边上的任意一点,过点D作DEBC,交AC于点E.设△ADE的高AF为x(0<x<6),以DE为折线将△ADE翻折,所得的△A'DE与梯形DBCE重叠部分的面积记为y(点A关于DE的对称点A'落在AH所在的直线上).
(1)分别求出当0<x≤3与3<x<6时,y与x的函数关系式;
(2)当x取何值时,y的值最大,最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x,面积为y.
(1)求y与x的函数关系式,并求自变量x的取值范围;
(2)生物园的面积能否达到210平方米?说明理由.

查看答案和解析>>

同步练习册答案