如图所示,第一个正方形的四个顶点分别为(1,1),(-1,1),(-1,-1),(1,-1);第二个正方形的四个顶点分别是(2,0),(0,2),(-2,0),(0,-2);第三个正方形的顶点分别是(2,2),(-2,2),(-2,-2),(2,-2).按此规律,第四个正方形的四个顶点坐标是什么?它的面积是多少?
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
3 |
3 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2006年初中毕业升学考试(吉林长春卷)数学(带解析) 题型:解答题
如图①,正方形的顶点的坐标分别为,顶点在第一象限.点从点出发,沿正方形按逆时针方向匀速运动,同时,点从点出发,沿轴正方向以相同速度运动.当点到达点时,两点同时停止运动,设运动的时间为秒.
(1)求正方形的边长.(2分)
(2)当点在边上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分(如图②所示),求两点的运动速度.(2分)
(3)求(2)中面积(平方单位)与时间(秒)的函数关系式及面积取最大值时点的坐标.(4分)
(4)若点保持(2)中的速度不变,则点沿着边运动时,的大小随着时间的增大而增大;沿着边运动时,的大小随着时间的增大而减小.当点沿着这两边运动时,使的点有 个.(2分)
(抛物线的顶点坐标是.)
查看答案和解析>>
科目:初中数学 来源:2006年初中毕业升学考试(吉林长春卷)数学(解析版) 题型:解答题
如图①,正方形的顶点的坐标分别为,顶点在第一象限.点从点出发,沿正方形按逆时针方向匀速运动,同时,点从点出发,沿轴正方向以相同速度运动.当点到达点时,两点同时停止运动,设运动的时间为秒.
(1)求正方形的边长.(2分)
(2)当点在边上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分(如图②所示),求两点的运动速度.(2分)
(3)求(2)中面积(平方单位)与时间(秒)的函数关系式及面积取最大值时点的坐标.(4分)
(4)若点保持(2)中的速度不变,则点沿着边运动时,的大小随着时间的增大而增大;沿着边运动时,的大小随着时间的增大而减小.当点沿着这两边运动时,使的点有 个.(2分)
(抛物线的顶点坐标是.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com