精英家教网 > 初中数学 > 题目详情
如图,P是y轴上一动点,是否存在平行于y轴的直线x=t,使它与直线y=x和直线y=-
1
2
x+2分别交于点D、E(E在D的上方),且△PDE为等腰直角三角形?若存在,求t的值及点P的坐标;若不存在,请说明原因.
存在.
方法一:当x=t时,y=x=t;
当x=t时,y=-
1
2
x+2=-
1
2
t+2.
∴E点坐标为(t,-
1
2
t+2),D点坐标为(t,t).(2分)
∵E在D的上方,
∴DE=-
1
2
t+2-t=-
3
2
t+2,且t<
4
3
.(3分)
∵△PDE为等腰直角三角形,
∴PE=DE或PD=DE或PE=PD.(4分)
若t>0,PE=DE时,-
3
2
t+2=t,
∴t=
4
5
,-
1
2
t+2=
8
5

∴P点坐标为(0,
8
5
).(5分)
若t>0,PD=DE时,-
3
2
t+2=t,
∴t=
4
5

∴P点坐标为(0,
4
5
).(6分)
若t>0,PE=PD时,即DE为斜边,
∴-
3
2
t+2=2t(7分)
∴t=
4
7
,DE的中点坐标为(t,
1
4
t+1),
∴P点坐标为(0,
8
7
).(8分)
若t<0,PE=DE和PD=DE时,由已知得DE=-t,-
3
2
t+2=-t,t=4>0(不符合题意,舍去),
此时直线x=t不存在.(10分)
若t<0,PE=PD时,即DE为斜边,由已知得DE=-2t,-
3
2
t+2=-2t,(11分)
∴t=-4,
1
4
t+1=0,
∴P点坐标为(0,0).(12分)
综上所述:当t=
4
5
时,△PDE为等腰直角三角形,此时P点坐标为(0,
8
5
)或(0,
4
5
);
当t=
4
7
时,△PDE为等腰直角三角形,此时P点坐标为(0,
8
7
);
当t=-4时,△PDE为等腰直角三角形,此时P点坐标为(0,0).

方法二:设直线y=-
1
2
x+2交y轴于点A,交直线y=x于点B,过B点作BM垂直于y轴,垂足为M,交DE于点N.
∵x=t平行于y轴,
∴MN=|t|.(1分)
y=x
y=-
1
2
x+2

解得x=
4
3
,y=
4
3

∴B点坐标为(
4
3
4
3
),
∴BM=
4
3

当x=0时,y=-
1
2
x+2=2,
∴A点坐标为(0,2),
∴OA=2.(3分)
∵△PDE为等腰直角三角形,
∴PE=DE或PD=DE或PE=PD.(4分)
如图,若t>0,PE=DE和PD=DE时,
∴PE=t,PD=t,
∵DEOA,
∴△BDE△BOA,
DE
OA
=
BN
BM
.(5分)
t
2
=
4
3
-t
4
3

∴t=
4
5

当t=
4
5
时,y=-
1
2
x+2=
8
5
,y=x=
4
5

∴P点坐标为(0,
8
5
)或(0,
4
5
).(6分)
若t>0,PD=PE时,即DE为斜边,
∴DE=2MN=2t.
∵DEOA,
∴△BDE△BOA,
DE
OA
=
BN
BM
(7分)
2MN
2
=
4
3
-MN
4
3

∴MN=t=
4
7
,DE中点的纵坐标为
1
4
t+1=
8
7

∴P点坐标为(0,
8
7
)(8分)
如图,
若t<0,PE=DE或PD=DE时,
∵DEOA,
∴△BDE△BOA,
DE
OA
=
BN
BM
(9分)
DE=-4(不符合题意,舍去),此时直线x=t不存在.(10分)
若t<0,PE=PD时,即DE为斜边,
∴DE=2MN=-2t,
∵DEOA,
∴△BDE△BOA,
DE
OA
=
BN
BM
(11分)
2MN
2
=
4
3
+MN
4
3

∴MN=4,
∴t=-4,
1
4
t+1=0,
∴P点坐标为(0,0).(12分)
综上述所述:当t=
4
5
时,△PDE为等腰直角三角形,此时P点坐标为(0,
8
5
)或(0,
4
5
);
当t=
4
7
时,△PDE为等腰直角三角形,此时P点坐标为(0,
8
7
);当t=-4时,
△PDE为等腰直角三角形,此时P点坐标为(0,0).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,AB=25,顶点C在y轴的负半轴上,tan∠ACO=
3
4
,点P在线段OC上,且PO、PC的长(PO<PC)是关于x的方程x2-(2k+4)x+8k=0的两根.
(1)求AC、BC的值;
(2)求P点坐标;
(3)在x轴上是否存在点Q,使以点A、C、P、Q为顶点的四边形是梯形?若存在,请直接写出直线PQ的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数的图象经过点(-2,1)和(4,4)
(1)求一次函数的解析式,并画出图象;
(2)P为该一次函数图象上一点,A为该函数图象与x轴的交点,若S△PAO=6,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是某汽车行驶的路程s(千米)与时间t(分钟)的函数关系图.观察图中所提供的信息,解答下列问题:
(1)汽车在前9分钟的平均速度是______千米/分钟.
(2)汽车在途中停留的时间为______分钟.
(3)当16≤t≤30时,求s与t的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形OABC的顶点A(0,4),B(-2,4),C(-4,0).过作B、C直线l,将直线l平移,平移后的直线l与x轴交于D,与y轴交于点E.
探究:当直线l向左或向右平移时(包括直线l与BC直线重合),在直线AB上是否存在P,使△PDE为等腰三角形?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在同一坐标系中,函数y=4kx-4k与函数y=kx(k≠0)的图象可以是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

运动会前,小明和小强在学校400米环形跑道上进行某个项目的训练,一次练习中,小明所跑的路程与所用时间的函数关系如图1所示,小强距离起点(终点)的路程与所用时间的函数关系如图2所示.

(1)两人进行的是______米赛跑训练;
(2)若两人同时同地同向出发,求两人出发后多长时间第一次并列?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

拖拉机刚开始工作时,油箱中有40升油,且工作每小时耗油5升.
(1)请写出拖拉机邮箱中的余油量Q(升)与工作时间t(小时)的函数关系式;
(2)求出自变量t的取值范围;
(3)画出这个函数的图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某服装厂批发应季T恤衫,其单价y(元)与批发数量x(件)(x为正整数)之间的函数关系如图所示.
(1)直接写出y与x的函数关系式;
(2)一个批发商一次购进200件T恤衫,所花的钱数是多少元?(其他费用不计);
(3)若每件T恤衫的成本价是45元,当10O<X≤500件(x为正整数)时,求服装厂所获利润w(元)与x(件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少?

查看答案和解析>>

同步练习册答案